| #define EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS |
| #include "sparse_solver.h" |
| |
| #if defined(DEBUG) |
| #undef DEBUG |
| #endif |
| |
| #include <Eigen/AccelerateSupport> |
| |
| template <typename MatrixType, typename DenseMat> |
| int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 300) { |
| typedef typename MatrixType::Scalar Scalar; |
| int rows = internal::random<int>(1, maxRows); |
| int cols = internal::random<int>(1, maxCols); |
| double density = (std::max)(8.0 / (rows * cols), 0.01); |
| |
| A.resize(rows, cols); |
| dA.resize(rows, cols); |
| initSparse<Scalar>(density, dA, A, ForceNonZeroDiag); |
| A.makeCompressed(); |
| return rows; |
| } |
| |
| template <typename MatrixType, typename DenseMat> |
| int generate_sparse_square_symmetric_problem(MatrixType& A, DenseMat& dA, int maxSize = 300) { |
| typedef typename MatrixType::Scalar Scalar; |
| int rows = internal::random<int>(1, maxSize); |
| int cols = rows; |
| double density = (std::max)(8.0 / (rows * cols), 0.01); |
| |
| A.resize(rows, cols); |
| dA.resize(rows, cols); |
| initSparse<Scalar>(density, dA, A, ForceNonZeroDiag); |
| dA = dA * dA.transpose(); |
| A = A * A.transpose(); |
| A.makeCompressed(); |
| return rows; |
| } |
| |
| template <typename Scalar, typename Solver> |
| void test_accelerate_ldlt() { |
| typedef SparseMatrix<Scalar> MatrixType; |
| typedef Matrix<Scalar, Dynamic, 1> DenseVector; |
| |
| MatrixType A; |
| Matrix<Scalar, Dynamic, Dynamic> dA; |
| |
| generate_sparse_square_symmetric_problem(A, dA); |
| |
| DenseVector b = DenseVector::Random(A.rows()); |
| |
| Solver solver; |
| solver.compute(A); |
| |
| if (solver.info() != Success) { |
| std::cerr << "sparse LDLT factorization failed\n"; |
| exit(0); |
| return; |
| } |
| |
| DenseVector x = solver.solve(b); |
| |
| if (solver.info() != Success) { |
| std::cerr << "sparse LDLT factorization failed\n"; |
| exit(0); |
| return; |
| } |
| |
| // Compare with a dense solver |
| DenseVector refX = dA.ldlt().solve(b); |
| VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>())); |
| } |
| |
| template <typename Scalar, typename Solver> |
| void test_accelerate_llt() { |
| typedef SparseMatrix<Scalar> MatrixType; |
| typedef Matrix<Scalar, Dynamic, 1> DenseVector; |
| |
| MatrixType A; |
| Matrix<Scalar, Dynamic, Dynamic> dA; |
| |
| generate_sparse_square_symmetric_problem(A, dA); |
| |
| DenseVector b = DenseVector::Random(A.rows()); |
| |
| Solver solver; |
| solver.compute(A); |
| |
| if (solver.info() != Success) { |
| std::cerr << "sparse LLT factorization failed\n"; |
| exit(0); |
| return; |
| } |
| |
| DenseVector x = solver.solve(b); |
| |
| if (solver.info() != Success) { |
| std::cerr << "sparse LLT factorization failed\n"; |
| exit(0); |
| return; |
| } |
| |
| // Compare with a dense solver |
| DenseVector refX = dA.llt().solve(b); |
| VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>())); |
| } |
| |
| template <typename Scalar, typename Solver> |
| void test_accelerate_qr() { |
| typedef SparseMatrix<Scalar> MatrixType; |
| typedef Matrix<Scalar, Dynamic, 1> DenseVector; |
| |
| MatrixType A; |
| Matrix<Scalar, Dynamic, Dynamic> dA; |
| |
| generate_sparse_rectangular_problem(A, dA); |
| |
| DenseVector b = DenseVector::Random(A.rows()); |
| |
| Solver solver; |
| solver.compute(A); |
| |
| if (solver.info() != Success) { |
| std::cerr << "sparse QR factorization failed\n"; |
| exit(0); |
| return; |
| } |
| |
| DenseVector x = solver.solve(b); |
| |
| if (solver.info() != Success) { |
| std::cerr << "sparse QR factorization failed\n"; |
| exit(0); |
| return; |
| } |
| |
| // Compare with a dense solver |
| DenseVector refX = dA.colPivHouseholderQr().solve(b); |
| VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>())); |
| } |
| |
| template <typename Scalar> |
| void run_tests() { |
| typedef SparseMatrix<Scalar> MatrixType; |
| |
| test_accelerate_ldlt<Scalar, AccelerateLDLT<MatrixType, Lower> >(); |
| test_accelerate_ldlt<Scalar, AccelerateLDLTUnpivoted<MatrixType, Lower> >(); |
| test_accelerate_ldlt<Scalar, AccelerateLDLTSBK<MatrixType, Lower> >(); |
| test_accelerate_ldlt<Scalar, AccelerateLDLTTPP<MatrixType, Lower> >(); |
| |
| test_accelerate_ldlt<Scalar, AccelerateLDLT<MatrixType, Upper> >(); |
| test_accelerate_ldlt<Scalar, AccelerateLDLTUnpivoted<MatrixType, Upper> >(); |
| test_accelerate_ldlt<Scalar, AccelerateLDLTSBK<MatrixType, Upper> >(); |
| test_accelerate_ldlt<Scalar, AccelerateLDLTTPP<MatrixType, Upper> >(); |
| |
| test_accelerate_llt<Scalar, AccelerateLLT<MatrixType, Lower> >(); |
| |
| test_accelerate_llt<Scalar, AccelerateLLT<MatrixType, Upper> >(); |
| |
| test_accelerate_qr<Scalar, AccelerateQR<MatrixType> >(); |
| } |
| |
| EIGEN_DECLARE_TEST(accelerate_support) { |
| CALL_SUBTEST_1(run_tests<float>()); |
| CALL_SUBTEST_2(run_tests<double>()); |
| } |