Revert "Update SVD Module to allow specifying computation options with a...
diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h
index b4ba37a..3552d5a 100644
--- a/Eigen/src/Core/MatrixBase.h
+++ b/Eigen/src/Core/MatrixBase.h
@@ -370,11 +370,8 @@
 
 /////////// SVD module ///////////
 
-    template<int Options = 0>
-    inline JacobiSVD<PlainObject, Options> jacobiSvd() const;
-
-    template<int Options = 0>
-    inline BDCSVD<PlainObject, Options> bdcSvd() const;
+    inline JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const;
+    inline BDCSVD<PlainObject>    bdcSvd(unsigned int computationOptions = 0) const;
 
 /////////// Geometry module ///////////
 
diff --git a/Eigen/src/Core/util/Constants.h b/Eigen/src/Core/util/Constants.h
index 16ed585..72fe330 100644
--- a/Eigen/src/Core/util/Constants.h
+++ b/Eigen/src/Core/util/Constants.h
@@ -423,14 +423,14 @@
 /** \ingroup enums
   * Possible values for the \p QRPreconditioner template parameter of JacobiSVD. */
 enum QRPreconditioners {
-  /** Use a QR decomposition with column pivoting as the first step. */
-  ColPivHouseholderQRPreconditioner = 0x0,
   /** Do not specify what is to be done if the SVD of a non-square matrix is asked for. */
-  NoQRPreconditioner = 0x40,
+  NoQRPreconditioner,
   /** Use a QR decomposition without pivoting as the first step. */
-  HouseholderQRPreconditioner = 0x80,
+  HouseholderQRPreconditioner,
+  /** Use a QR decomposition with column pivoting as the first step. */
+  ColPivHouseholderQRPreconditioner,
   /** Use a QR decomposition with full pivoting as the first step. */
-  FullPivHouseholderQRPreconditioner = 0xC0
+  FullPivHouseholderQRPreconditioner
 };
 
 #ifdef Success
diff --git a/Eigen/src/Core/util/ForwardDeclarations.h b/Eigen/src/Core/util/ForwardDeclarations.h
index 1c88fa9..6b0ac50 100644
--- a/Eigen/src/Core/util/ForwardDeclarations.h
+++ b/Eigen/src/Core/util/ForwardDeclarations.h
@@ -277,8 +277,8 @@
 template<typename MatrixType> class FullPivHouseholderQR;
 template<typename MatrixType> class CompleteOrthogonalDecomposition;
 template<typename MatrixType> class SVDBase;
-template<typename MatrixType, int Options = 0> class JacobiSVD;
-template<typename MatrixType, int Options = 0> class BDCSVD;
+template<typename MatrixType, int QRPreconditioner = ColPivHouseholderQRPreconditioner> class JacobiSVD;
+template<typename MatrixType> class BDCSVD;
 template<typename MatrixType, int UpLo = Lower> class LLT;
 template<typename MatrixType, int UpLo = Lower> class LDLT;
 template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence;
diff --git a/Eigen/src/Geometry/Hyperplane.h b/Eigen/src/Geometry/Hyperplane.h
index 0d23df3..db0a485 100644
--- a/Eigen/src/Geometry/Hyperplane.h
+++ b/Eigen/src/Geometry/Hyperplane.h
@@ -108,7 +108,7 @@
     if(norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon())
     {
       Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
-      JacobiSVD<Matrix<Scalar,2,3>, ComputeFullV> svd(m);
+      JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
       result.normal() = svd.matrixV().col(2);
     }
     else
diff --git a/Eigen/src/Geometry/Quaternion.h b/Eigen/src/Geometry/Quaternion.h
index 52e8a81..e291bf3 100644
--- a/Eigen/src/Geometry/Quaternion.h
+++ b/Eigen/src/Geometry/Quaternion.h
@@ -651,7 +651,7 @@
   {
     c = numext::maxi(c,Scalar(-1));
     Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
-    JacobiSVD<Matrix<Scalar,2,3>, ComputeFullV> svd(m);
+    JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
     Vector3 axis = svd.matrixV().col(2);
 
     Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
diff --git a/Eigen/src/Geometry/Transform.h b/Eigen/src/Geometry/Transform.h
index c64fc5f..27ea962 100644
--- a/Eigen/src/Geometry/Transform.h
+++ b/Eigen/src/Geometry/Transform.h
@@ -1105,7 +1105,7 @@
 EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
 {
   // Note that JacobiSVD is faster than BDCSVD for small matrices.
-  JacobiSVD<LinearMatrixType, ComputeFullU | ComputeFullV> svd(linear());
+  JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
 
   Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) ? Scalar(-1) : Scalar(1); // so x has absolute value 1
   VectorType sv(svd.singularValues());
@@ -1135,7 +1135,7 @@
 EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
 {
   // Note that JacobiSVD is faster than BDCSVD for small matrices.
-  JacobiSVD<LinearMatrixType, ComputeFullU | ComputeFullV> svd(linear());
+  JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
 
   Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) ? Scalar(-1) : Scalar(1); // so x has absolute value 1
   VectorType sv(svd.singularValues());
diff --git a/Eigen/src/Geometry/Umeyama.h b/Eigen/src/Geometry/Umeyama.h
index 736ccb6..0a9dd35 100644
--- a/Eigen/src/Geometry/Umeyama.h
+++ b/Eigen/src/Geometry/Umeyama.h
@@ -127,7 +127,7 @@
   // Eq. (38)
   const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
 
-  JacobiSVD<MatrixType, ComputeFullU | ComputeFullV> svd(sigma);
+  JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV);
 
   // Initialize the resulting transformation with an identity matrix...
   TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);
diff --git a/Eigen/src/SVD/BDCSVD.h b/Eigen/src/SVD/BDCSVD.h
index 48288a5..8bb30cd 100644
--- a/Eigen/src/SVD/BDCSVD.h
+++ b/Eigen/src/SVD/BDCSVD.h
@@ -38,14 +38,14 @@
 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
 IOFormat bdcsvdfmt(8, 0, ", ", "\n", "  [", "]");
 #endif
-  
-template<typename MatrixType_, int Options> class BDCSVD;
+
+template<typename MatrixType_> class BDCSVD;
 
 namespace internal {
 
-template<typename MatrixType_, int Options>
-struct traits<BDCSVD<MatrixType_,Options> >
-        : svd_traits<MatrixType_, Options>
+template<typename MatrixType_>
+struct traits<BDCSVD<MatrixType_> >
+        : traits<MatrixType_>
 {
   typedef MatrixType_ MatrixType;
 };
@@ -61,11 +61,6 @@
  * \brief class Bidiagonal Divide and Conquer SVD
  *
  * \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition
- * 
- * \tparam Options this optional parameter allows one to specify options for computing unitaries \a U and \a V.
- *                  Possible values are #ComputeThinU, #ComputeThinV, #ComputeFullU, #ComputeFullV. 
- *                  It is not possible to request the thin and full version of U or V.
- *                  By default, unitaries are not computed.
  *
  * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization,
  * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD.
@@ -80,8 +75,8 @@
  *
  * \sa class JacobiSVD
  */
-template<typename MatrixType_, int Options>
-class BDCSVD : public SVDBase<BDCSVD<MatrixType_, Options> >
+template<typename MatrixType_>
+class BDCSVD : public SVDBase<BDCSVD<MatrixType_> >
 {
   typedef SVDBase<BDCSVD> Base;
 
@@ -132,20 +127,26 @@
    * according to the specified problem size.
    * \sa BDCSVD()
    */
-  BDCSVD(Index rows, Index cols)
+  BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
     : m_algoswap(16), m_numIters(0)
   {
-    allocate(rows, cols);
+    allocate(rows, cols, computationOptions);
   }
 
   /** \brief Constructor performing the decomposition of given matrix.
    *
    * \param matrix the matrix to decompose
+   * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
+   *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
+   *                           #ComputeFullV, #ComputeThinV.
+   *
+   * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
+   * available with the (non - default) FullPivHouseholderQR preconditioner.
    */
-  BDCSVD(const MatrixType& matrix)
+  BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
     : m_algoswap(16), m_numIters(0)
   {
-    compute(matrix);
+    compute(matrix, computationOptions);
   }
 
   ~BDCSVD()
@@ -155,8 +156,25 @@
   /** \brief Method performing the decomposition of given matrix using custom options.
    *
    * \param matrix the matrix to decompose
+   * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
+   *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
+   *                           #ComputeFullV, #ComputeThinV.
+   *
+   * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
+   * available with the (non - default) FullPivHouseholderQR preconditioner.
    */
-  BDCSVD& compute(const MatrixType& matrix);
+  BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
+
+  /** \brief Method performing the decomposition of given matrix using current options.
+   *
+   * \param matrix the matrix to decompose
+   *
+   * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
+   */
+  BDCSVD& compute(const MatrixType& matrix)
+  {
+    return compute(matrix, this->m_computationOptions);
+  }
 
   void setSwitchSize(int s)
   {
@@ -165,7 +183,7 @@
   }
 
 private:
-  void allocate(Index rows, Index cols);
+  void allocate(Index rows, Index cols, unsigned int computationOptions);
   void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
   void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
   void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus);
@@ -178,8 +196,6 @@
   void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
   void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1);
   static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift);
-  template<typename SVDType>
-  void computeBaseCase(SVDType& svd, Index n, Index firstCol, Index firstRowW, Index firstColW, Index shift);
 
 protected:
   MatrixXr m_naiveU, m_naiveV;
@@ -192,10 +208,10 @@
 
   using Base::m_singularValues;
   using Base::m_diagSize;
-  using Base::ShouldComputeFullU;
-  using Base::ShouldComputeFullV;
-  using Base::ShouldComputeThinU;
-  using Base::ShouldComputeThinV;
+  using Base::m_computeFullU;
+  using Base::m_computeFullV;
+  using Base::m_computeThinU;
+  using Base::m_computeThinV;
   using Base::m_matrixU;
   using Base::m_matrixV;
   using Base::m_info;
@@ -208,12 +224,12 @@
 
 
 // Method to allocate and initialize matrix and attributes
-template<typename MatrixType, int Options>
-void BDCSVD<MatrixType, Options>::allocate(Eigen::Index rows, Eigen::Index cols)
+template<typename MatrixType>
+void BDCSVD<MatrixType>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
 {
   m_isTranspose = (cols > rows);
 
-  if (Base::allocate(rows, cols))
+  if (Base::allocate(rows, cols, computationOptions))
     return;
 
   m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
@@ -231,13 +247,13 @@
   m_workspaceI.resize(3*m_diagSize);
 }// end allocate
 
-template<typename MatrixType, int Options>
-BDCSVD<MatrixType, Options>& BDCSVD<MatrixType, Options>::compute(const MatrixType& matrix)
+template<typename MatrixType>
+BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
 {
 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
   std::cout << "\n\n\n======================================================================================================================\n\n\n";
 #endif
-  allocate(matrix.rows(), matrix.cols());
+  allocate(matrix.rows(), matrix.cols(), computationOptions);
   using std::abs;
 
   const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
@@ -246,7 +262,7 @@
   if(matrix.cols() < m_algoswap)
   {
     // FIXME this line involves temporaries
-    JacobiSVD<MatrixType, Options> jsvd(matrix);
+    JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
     m_isInitialized = true;
     m_info = jsvd.info();
     if (m_info == Success || m_info == NoConvergence) {
@@ -317,21 +333,21 @@
 }// end compute
 
 
-template<typename MatrixType, int Options>
+template<typename MatrixType>
 template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
-void BDCSVD<MatrixType, Options>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
+void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
 {
   // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
   if (computeU())
   {
-    Index Ucols = ShouldComputeThinU ? m_diagSize : householderU.cols();
+    Index Ucols = m_computeThinU ? m_diagSize : householderU.cols();
     m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
     m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
     householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer
   }
   if (computeV())
   {
-    Index Vcols = ShouldComputeThinV ? m_diagSize : householderV.cols();
+    Index Vcols = m_computeThinV ? m_diagSize : householderV.cols();
     m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
     m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
     householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer
@@ -346,8 +362,8 @@
   * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large
   * enough.
   */
-template<typename MatrixType, int Options>
-void BDCSVD<MatrixType, Options>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1)
+template<typename MatrixType>
+void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1)
 {
   Index n = A.rows();
   if(n>100)
@@ -387,26 +403,7 @@
   }
 }
 
-template<typename MatrixType, int Options>
-template<typename SVDType>
-void BDCSVD<MatrixType, Options>::computeBaseCase(SVDType& svd, Index n, Index firstCol, Index firstRowW, Index firstColW, Index shift)
-{
-  svd.compute(m_computed.block(firstCol, firstCol, n + 1, n));
-  m_info = svd.info();
-  if (m_info != Success && m_info != NoConvergence) return;
-  if (m_compU)
-    m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = svd.matrixU();
-  else
-  {
-    m_naiveU.row(0).segment(firstCol, n + 1).real() = svd.matrixU().row(0);
-    m_naiveU.row(1).segment(firstCol, n + 1).real() = svd.matrixU().row(n);
-  }
-  if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = svd.matrixV();
-  m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
-  m_computed.diagonal().segment(firstCol + shift, n) = svd.singularValues().head(n);
-}
-
-// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the 
+// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
 // place of the submatrix we are currently working on.
 
 //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
@@ -416,8 +413,8 @@
 //@param firstColW : Same as firstRowW with the column.
 //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
 // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
-template<typename MatrixType, int Options>
-void BDCSVD<MatrixType, Options>::divide(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
+template<typename MatrixType>
+void BDCSVD<MatrixType>::divide(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
 {
   // requires rows = cols + 1;
   using std::pow;
@@ -435,17 +432,20 @@
   // matrices.
   if (n < m_algoswap)
   {
-    // FIXME this block involves temporaries
-    if (m_compV)
-    {
-      JacobiSVD<MatrixXr, ComputeFullU | ComputeFullV> baseSvd;
-      computeBaseCase(baseSvd, n, firstCol, firstRowW, firstColW, shift);
-    } 
+    // FIXME this line involves temporaries
+    JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
+    m_info = b.info();
+    if (m_info != Success && m_info != NoConvergence) return;
+    if (m_compU)
+      m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
     else
     {
-      JacobiSVD<MatrixXr, ComputeFullU> baseSvd;
-      computeBaseCase(baseSvd, n, firstCol, firstRowW, firstColW, shift);
+      m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
+      m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
     }
+    if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
+    m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
+    m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
     return;
   }
   // We use the divide and conquer algorithm
@@ -597,8 +597,8 @@
 // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
 // handling of round-off errors, be consistent in ordering
 // For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
-template <typename MatrixType, int Options>
-void BDCSVD<MatrixType, Options>::computeSVDofM(Eigen::Index firstCol, Eigen::Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
+template <typename MatrixType>
+void BDCSVD<MatrixType>::computeSVDofM(Eigen::Index firstCol, Eigen::Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
 {
   const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
   using std::abs;
@@ -725,8 +725,8 @@
 #endif
 }
 
-template <typename MatrixType, int Options>
-typename BDCSVD<MatrixType, Options>::RealScalar BDCSVD<MatrixType, Options>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
+template <typename MatrixType>
+typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
 {
   Index m = perm.size();
   RealScalar res = Literal(1);
@@ -741,9 +741,9 @@
 
 }
 
-template <typename MatrixType, int Options>
-void BDCSVD<MatrixType, Options>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
-                                                  VectorType& singVals, ArrayRef shifts, ArrayRef mus)
+template <typename MatrixType>
+void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
+                                         VectorType& singVals, ArrayRef shifts, ArrayRef mus)
 {
   using std::abs;
   using std::swap;
@@ -987,8 +987,8 @@
 
 
 // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
-template <typename MatrixType, int Options>
-void BDCSVD<MatrixType, Options>::perturbCol0
+template <typename MatrixType>
+void BDCSVD<MatrixType>::perturbCol0
    (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
     const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat)
 {
@@ -1067,8 +1067,8 @@
 }
 
 // compute singular vectors
-template <typename MatrixType, int Options>
-void BDCSVD<MatrixType, Options>::computeSingVecs
+template <typename MatrixType>
+void BDCSVD<MatrixType>::computeSingVecs
    (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
     const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V)
 {
@@ -1113,8 +1113,8 @@
 // page 12_13
 // i >= 1, di almost null and zi non null.
 // We use a rotation to zero out zi applied to the left of M
-template <typename MatrixType, int Options>
-void BDCSVD<MatrixType, Options>::deflation43(Eigen::Index firstCol, Eigen::Index shift, Eigen::Index i, Eigen::Index size)
+template <typename MatrixType>
+void BDCSVD<MatrixType>::deflation43(Eigen::Index firstCol, Eigen::Index shift, Eigen::Index i, Eigen::Index size)
 {
   using std::abs;
   using std::sqrt;
@@ -1142,8 +1142,8 @@
 // i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M)
 // We apply two rotations to have zj = 0;
 // TODO deflation44 is still broken and not properly tested
-template <typename MatrixType, int Options>
-void BDCSVD<MatrixType, Options>::deflation44(Eigen::Index firstColu , Eigen::Index firstColm, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index i, Eigen::Index j, Eigen::Index size)
+template <typename MatrixType>
+void BDCSVD<MatrixType>::deflation44(Eigen::Index firstColu , Eigen::Index firstColm, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index i, Eigen::Index j, Eigen::Index size)
 {
   using std::abs;
   using std::sqrt;
@@ -1182,8 +1182,8 @@
 
 
 // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
-template <typename MatrixType, int Options>
-void BDCSVD<MatrixType, Options>::deflation(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index k, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
+template <typename MatrixType>
+void BDCSVD<MatrixType>::deflation(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index k, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
 {
   using std::sqrt;
   using std::abs;
@@ -1361,11 +1361,10 @@
   * \sa class BDCSVD
   */
 template<typename Derived>
-template<int Options>
-BDCSVD<typename MatrixBase<Derived>::PlainObject, Options>
-MatrixBase<Derived>::bdcSvd() const
+BDCSVD<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
 {
-  return BDCSVD<PlainObject, Options>(*this);
+  return BDCSVD<PlainObject>(*this, computationOptions);
 }
 
 } // end namespace Eigen
diff --git a/Eigen/src/SVD/JacobiSVD.h b/Eigen/src/SVD/JacobiSVD.h
index 9b765e0..91c95ec 100644
--- a/Eigen/src/SVD/JacobiSVD.h
+++ b/Eigen/src/SVD/JacobiSVD.h
@@ -13,20 +13,12 @@
 
 #include "./InternalHeaderCheck.h"
 
-namespace Eigen {
+namespace Eigen { 
 
 namespace internal {
-
-enum OptionsMasks {
-  QRPreconditionerBits = NoQRPreconditioner |
-                         HouseholderQRPreconditioner |
-                         ColPivHouseholderQRPreconditioner |
-                         FullPivHouseholderQRPreconditioner
-};
-
 // forward declaration (needed by ICC)
 // the empty body is required by MSVC
-template<typename MatrixType, int Options,
+template<typename MatrixType, int QRPreconditioner,
          bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
 struct svd_precondition_2x2_block_to_be_real {};
 
@@ -54,16 +46,16 @@
   };
 };
 
-template<typename MatrixType, int Options, int QRPreconditioner, int Case,
+template<typename MatrixType, int QRPreconditioner, int Case,
          bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
 > struct qr_preconditioner_impl {};
 
-template<typename MatrixType, int Options, int QRPreconditioner, int Case>
-class qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, Case, false>
+template<typename MatrixType, int QRPreconditioner, int Case>
+class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
 {
 public:
-  void allocate(const JacobiSVD<MatrixType, Options>&) {}
-  bool run(JacobiSVD<MatrixType, Options>&, const MatrixType&)
+  void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
+  bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
   {
     return false;
   }
@@ -71,71 +63,65 @@
 
 /*** preconditioner using FullPivHouseholderQR ***/
 
-template<typename MatrixType, int Options>
-class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
+template<typename MatrixType>
+class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
 {
 public:
   typedef typename MatrixType::Scalar Scalar;
-  typedef JacobiSVD<MatrixType, Options> SVDType;
-  
   enum
   {
-    WorkspaceSize = MatrixType::RowsAtCompileTime,
-    MaxWorkspaceSize = MatrixType::MaxRowsAtCompileTime
+    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
   };
+  typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
 
-  typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;
-
-  void allocate(const SVDType& svd)
+  void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
   {
     if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
     {
       m_qr.~QRType();
       ::new (&m_qr) QRType(svd.rows(), svd.cols());
     }
-    if (svd.ShouldComputeFullU) m_workspace.resize(svd.rows());
+    if (svd.m_computeFullU) m_workspace.resize(svd.rows());
   }
 
-  bool run(SVDType& svd, const MatrixType& matrix)
+  bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
   {
     if(matrix.rows() > matrix.cols())
     {
       m_qr.compute(matrix);
       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
-      if(svd.ShouldComputeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
+      if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
       if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
       return true;
     }
     return false;
   }
-
 private:
   typedef FullPivHouseholderQR<MatrixType> QRType;
   QRType m_qr;
   WorkspaceType m_workspace;
 };
 
-template<typename MatrixType, int Options>
-class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
+template<typename MatrixType>
+class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
 {
 public:
   typedef typename MatrixType::Scalar Scalar;
-  typedef JacobiSVD<MatrixType, Options> SVDType;
-
   enum
   {
     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
-    MatrixOptions = MatrixType::Options
+    Options = MatrixType::Options
   };
 
   typedef typename internal::make_proper_matrix_type<
-    Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime
+    Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
   >::type TransposeTypeWithSameStorageOrder;
 
-  void allocate(const SVDType& svd)
+  void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
   {
     if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
     {
@@ -143,66 +129,54 @@
       ::new (&m_qr) QRType(svd.cols(), svd.rows());
     }
     m_adjoint.resize(svd.cols(), svd.rows());
-    if (svd.ShouldComputeFullV) m_workspace.resize(svd.cols());
+    if (svd.m_computeFullV) m_workspace.resize(svd.cols());
   }
 
-  bool run(SVDType& svd, const MatrixType& matrix)
+  bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
   {
     if(matrix.cols() > matrix.rows())
     {
       m_adjoint = matrix.adjoint();
       m_qr.compute(m_adjoint);
       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
-      if(svd.ShouldComputeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
+      if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
       if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
       return true;
     }
     else return false;
   }
-
 private:
   typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
   QRType m_qr;
   TransposeTypeWithSameStorageOrder m_adjoint;
-  typename plain_row_type<MatrixType>::type m_workspace;
+  typename internal::plain_row_type<MatrixType>::type m_workspace;
 };
 
 /*** preconditioner using ColPivHouseholderQR ***/
 
-template<typename MatrixType, int Options>
-class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
+template<typename MatrixType>
+class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
 {
 public:
-  typedef typename MatrixType::Scalar Scalar;
-  typedef JacobiSVD<MatrixType, Options> SVDType;
-
-  enum
-  {
-    WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime,
-    MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime
-  };
-
-  typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;
-
-  void allocate(const SVDType& svd)
+  void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
   {
     if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
     {
       m_qr.~QRType();
       ::new (&m_qr) QRType(svd.rows(), svd.cols());
     }
-    if (svd.ShouldComputeFullU) m_workspace.resize(svd.rows());
-    else if (svd.ShouldComputeThinU) m_workspace.resize(svd.cols());
+    if (svd.m_computeFullU) m_workspace.resize(svd.rows());
+    else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
   }
 
-  bool run(SVDType& svd, const MatrixType& matrix)
+  bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
   {
     if(matrix.rows() > matrix.cols())
     {
       m_qr.compute(matrix);
       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
-      if(svd.ShouldComputeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
-      else if(svd.ShouldComputeThinU)
+      if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
+      else if(svd.m_computeThinU)
       {
         svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
@@ -216,46 +190,40 @@
 private:
   typedef ColPivHouseholderQR<MatrixType> QRType;
   QRType m_qr;
-  WorkspaceType m_workspace;
+  typename internal::plain_col_type<MatrixType>::type m_workspace;
 };
 
-template<typename MatrixType, int Options>
-class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
+template<typename MatrixType>
+class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
 {
 public:
   typedef typename MatrixType::Scalar Scalar;
-  typedef JacobiSVD<MatrixType, Options> SVDType;
-
   enum
   {
     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
-    MatrixOptions = MatrixType::Options,
-    WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime,
-    MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime
+    Options = MatrixType::Options
   };
 
-  typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType;
-
   typedef typename internal::make_proper_matrix_type<
-    Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime
+    Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
   >::type TransposeTypeWithSameStorageOrder;
 
-  void allocate(const SVDType& svd)
+  void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
   {
     if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
     {
       m_qr.~QRType();
       ::new (&m_qr) QRType(svd.cols(), svd.rows());
     }
-    if (svd.ShouldComputeFullV) m_workspace.resize(svd.cols());
-    else if (svd.ShouldComputeThinV) m_workspace.resize(svd.rows());
+    if (svd.m_computeFullV) m_workspace.resize(svd.cols());
+    else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
     m_adjoint.resize(svd.cols(), svd.rows());
   }
 
-  bool run(SVDType& svd, const MatrixType& matrix)
+  bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
   {
     if(matrix.cols() > matrix.rows())
     {
@@ -263,8 +231,8 @@
       m_qr.compute(m_adjoint);
 
       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
-      if(svd.ShouldComputeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
-      else if(svd.ShouldComputeThinV)
+      if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
+      else if(svd.m_computeThinV)
       {
         svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
@@ -279,45 +247,34 @@
   typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
   QRType m_qr;
   TransposeTypeWithSameStorageOrder m_adjoint;
-  WorkspaceType m_workspace;
+  typename internal::plain_row_type<MatrixType>::type m_workspace;
 };
 
 /*** preconditioner using HouseholderQR ***/
 
-template<typename MatrixType, int Options>
-class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
+template<typename MatrixType>
+class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
 {
 public:
-  typedef typename MatrixType::Scalar Scalar;
-  typedef JacobiSVD<MatrixType, Options> SVDType;
-
-  enum
-  {
-    WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime,
-    MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime
-  };
-
-  typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;
-
-  void allocate(const SVDType& svd)
+  void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
   {
     if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
     {
       m_qr.~QRType();
       ::new (&m_qr) QRType(svd.rows(), svd.cols());
     }
-    if (svd.ShouldComputeFullU) m_workspace.resize(svd.rows());
-    else if (svd.ShouldComputeThinU) m_workspace.resize(svd.cols());
+    if (svd.m_computeFullU) m_workspace.resize(svd.rows());
+    else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
   }
 
-  bool run(SVDType& svd, const MatrixType& matrix)
+  bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
   {
     if(matrix.rows() > matrix.cols())
     {
       m_qr.compute(matrix);
       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
-      if(svd.ShouldComputeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
-      else if(svd.ShouldComputeThinU)
+      if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
+      else if(svd.m_computeThinU)
       {
         svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
@@ -327,50 +284,43 @@
     }
     return false;
   }
-
 private:
   typedef HouseholderQR<MatrixType> QRType;
   QRType m_qr;
-  WorkspaceType m_workspace;
+  typename internal::plain_col_type<MatrixType>::type m_workspace;
 };
 
-template<typename MatrixType, int Options>
-class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
+template<typename MatrixType>
+class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
 {
 public:
   typedef typename MatrixType::Scalar Scalar;
-  typedef JacobiSVD<MatrixType, Options> SVDType;
-
   enum
   {
     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
-    MatrixOptions = MatrixType::Options,
-    WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime,
-    MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime
+    Options = MatrixType::Options
   };
 
-  typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType;
-
   typedef typename internal::make_proper_matrix_type<
-    Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime
+    Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
   >::type TransposeTypeWithSameStorageOrder;
 
-  void allocate(const SVDType& svd)
+  void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
   {
     if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
     {
       m_qr.~QRType();
       ::new (&m_qr) QRType(svd.cols(), svd.rows());
     }
-    if (svd.ShouldComputeFullV) m_workspace.resize(svd.cols());
-    else if (svd.ShouldComputeThinV) m_workspace.resize(svd.rows());
+    if (svd.m_computeFullV) m_workspace.resize(svd.cols());
+    else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
     m_adjoint.resize(svd.cols(), svd.rows());
   }
 
-  bool run(SVDType& svd, const MatrixType& matrix)
+  bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
   {
     if(matrix.cols() > matrix.rows())
     {
@@ -378,8 +328,8 @@
       m_qr.compute(m_adjoint);
 
       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
-      if(svd.ShouldComputeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
-      else if(svd.ShouldComputeThinV)
+      if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
+      else if(svd.m_computeThinV)
       {
         svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
@@ -394,7 +344,7 @@
   typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
   QRType m_qr;
   TransposeTypeWithSameStorageOrder m_adjoint;
-  WorkspaceType m_workspace;
+  typename internal::plain_row_type<MatrixType>::type m_workspace;
 };
 
 /*** 2x2 SVD implementation
@@ -402,18 +352,18 @@
  *** JacobiSVD consists in performing a series of 2x2 SVD subproblems
  ***/
 
-template<typename MatrixType, int Options>
-struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, false>
+template<typename MatrixType, int QRPreconditioner>
+struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
 {
-  typedef JacobiSVD<MatrixType, Options> SVD;
+  typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
   typedef typename MatrixType::RealScalar RealScalar;
   static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; }
 };
 
-template<typename MatrixType, int Options>
-struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, true>
+template<typename MatrixType, int QRPreconditioner>
+struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
 {
-  typedef JacobiSVD<MatrixType, Options> SVD;
+  typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
   typedef typename MatrixType::Scalar Scalar;
   typedef typename MatrixType::RealScalar RealScalar;
   static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry)
@@ -475,9 +425,9 @@
   }
 };
 
-template<typename MatrixType_, int Options>
-struct traits<JacobiSVD<MatrixType_,Options> >
-        : svd_traits<MatrixType_, Options>
+template<typename MatrixType_, int QRPreconditioner>
+struct traits<JacobiSVD<MatrixType_,QRPreconditioner> >
+        : traits<MatrixType_>
 {
   typedef MatrixType_ MatrixType;
 };
@@ -492,9 +442,8 @@
   * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
   *
   * \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition
-  * \tparam Options this optional parameter allows one to specify the type of QR decomposition that will be used internally
-  *                        for the R-SVD step for non-square matrices. Additionally, it allows one to specify whether to compute
-  *                        thin or full unitaries \a U and \a V. See discussion of possible values below.
+  * \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
+  *                        for the R-SVD step for non-square matrices. See discussion of possible values below.
   *
   * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
   *   \f[ A = U S V^* \f]
@@ -523,7 +472,7 @@
   * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
   * terminate in finite (and reasonable) time.
   *
-  * The possible QR preconditioners that can be set with Options template parameter are:
+  * The possible values for QRPreconditioner are:
   * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
   * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
   *     Contrary to other QRs, it doesn't allow computing thin unitaries.
@@ -536,16 +485,10 @@
   *     faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
   *     if QR preconditioning is needed before applying it anyway.
   *
-  * One may also use the Options template parameter to specify how the unitaries should be computed. The options are #ComputeThinU,
-  * #ComputeThinV, #ComputeFullU, #ComputeFullV. It is not possible to request both a thin and full unitary.
-  * So, it is not possible to use ComputeThinU | ComputeFullU or ComputeThinV | ComputeFullV. By default, unitaries will not be computed.
-  *
-  * You can set the QRPreconditioner and unitary options together: JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner | ComputeThinU | ComputeFullV>
-  *
   * \sa MatrixBase::jacobiSvd()
   */
-template<typename MatrixType_, int Options> class JacobiSVD
- : public SVDBase<JacobiSVD<MatrixType_,Options> >
+template<typename MatrixType_, int QRPreconditioner> class JacobiSVD
+ : public SVDBase<JacobiSVD<MatrixType_,QRPreconditioner> >
 {
     typedef SVDBase<JacobiSVD> Base;
   public:
@@ -554,7 +497,6 @@
     typedef typename MatrixType::Scalar Scalar;
     typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
     enum {
-      QRPreconditioner = Options & internal::QRPreconditionerBits,
       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
       DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
@@ -567,6 +509,9 @@
     typedef typename Base::MatrixUType MatrixUType;
     typedef typename Base::MatrixVType MatrixVType;
     typedef typename Base::SingularValuesType SingularValuesType;
+    
+    typedef typename internal::plain_row_type<MatrixType>::type RowType;
+    typedef typename internal::plain_col_type<MatrixType>::type ColType;
     typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
                    MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
             WorkMatrixType;
@@ -579,31 +524,55 @@
     JacobiSVD()
     {}
 
+
     /** \brief Default Constructor with memory preallocation
       *
       * Like the default constructor but with preallocation of the internal data
       * according to the specified problem size.
       * \sa JacobiSVD()
       */
-    JacobiSVD(Index rows, Index cols)
+    JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
     {
-      allocate(rows, cols);
+      allocate(rows, cols, computationOptions);
     }
 
     /** \brief Constructor performing the decomposition of given matrix.
      *
      * \param matrix the matrix to decompose
+     * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
+     *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
+     *                           #ComputeFullV, #ComputeThinV.
+     *
+     * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
+     * available with the (non-default) FullPivHouseholderQR preconditioner.
      */
-    explicit JacobiSVD(const MatrixType& matrix)
+    explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
     {
-      compute(matrix);
+      compute(matrix, computationOptions);
     }
 
     /** \brief Method performing the decomposition of given matrix using custom options.
      *
      * \param matrix the matrix to decompose
+     * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
+     *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
+     *                           #ComputeFullV, #ComputeThinV.
+     *
+     * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
+     * available with the (non-default) FullPivHouseholderQR preconditioner.
      */
-    JacobiSVD& compute(const MatrixType& matrix);
+    JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
+
+    /** \brief Method performing the decomposition of given matrix using current options.
+     *
+     * \param matrix the matrix to decompose
+     *
+     * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
+     */
+    JacobiSVD& compute(const MatrixType& matrix)
+    {
+      return compute(matrix, m_computationOptions);
+    }
 
     using Base::computeU;
     using Base::computeV;
@@ -612,7 +581,7 @@
     using Base::rank;
 
   private:
-    void allocate(Index rows, Index cols);
+    void allocate(Index rows, Index cols, unsigned int computationOptions);
 
   protected:
     using Base::m_matrixU;
@@ -622,49 +591,84 @@
     using Base::m_isInitialized;
     using Base::m_isAllocated;
     using Base::m_usePrescribedThreshold;
+    using Base::m_computeFullU;
+    using Base::m_computeThinU;
+    using Base::m_computeFullV;
+    using Base::m_computeThinV;
+    using Base::m_computationOptions;
     using Base::m_nonzeroSingularValues;
     using Base::m_rows;
     using Base::m_cols;
     using Base::m_diagSize;
     using Base::m_prescribedThreshold;
-    using Base::ShouldComputeFullU;
-    using Base::ShouldComputeThinU;
-    using Base::ShouldComputeFullV;
-    using Base::ShouldComputeThinV;
     WorkMatrixType m_workMatrix;
 
-    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES((ShouldComputeThinU != 0 || ShouldComputeThinV != 0), QRPreconditioner != FullPivHouseholderQRPreconditioner),
-                        "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
-                        "Use the ColPivHouseholderQR preconditioner instead.")
-
-    template<typename MatrixType__, int Options_, bool IsComplex_>
+    template<typename MatrixType__, int QRPreconditioner_, bool IsComplex_>
     friend struct internal::svd_precondition_2x2_block_to_be_real;
-    template<typename MatrixType__, int Options_, int QRPreconditioner_, int Case_, bool DoAnything_>
+    template<typename MatrixType__, int QRPreconditioner_, int Case_, bool DoAnything_>
     friend struct internal::qr_preconditioner_impl;
 
-    internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
-    internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
+    internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
+    internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
     MatrixType m_scaledMatrix;
 };
 
-template<typename MatrixType, int Options>
-void JacobiSVD<MatrixType, Options>::allocate(Eigen::Index rows, Eigen::Index cols)
+template<typename MatrixType, int QRPreconditioner>
+void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
 {
-  if (Base::allocate(rows, cols))
-    return;
+  eigen_assert(rows >= 0 && cols >= 0);
 
+  if (m_isAllocated &&
+      rows == m_rows &&
+      cols == m_cols &&
+      computationOptions == m_computationOptions)
+  {
+    return;
+  }
+
+  m_rows = rows;
+  m_cols = cols;
+  m_info = Success;
+  m_isInitialized = false;
+  m_isAllocated = true;
+  m_computationOptions = computationOptions;
+  m_computeFullU = (computationOptions & ComputeFullU) != 0;
+  m_computeThinU = (computationOptions & ComputeThinU) != 0;
+  m_computeFullV = (computationOptions & ComputeFullV) != 0;
+  m_computeThinV = (computationOptions & ComputeThinV) != 0;
+  eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
+  eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
+  eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
+              "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
+  if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
+  {
+      eigen_assert(!(m_computeThinU || m_computeThinV) &&
+              "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
+              "Use the ColPivHouseholderQR preconditioner instead.");
+  }
+  m_diagSize = (std::min)(m_rows, m_cols);
+  m_singularValues.resize(m_diagSize);
+  if(RowsAtCompileTime==Dynamic)
+    m_matrixU.resize(m_rows, m_computeFullU ? m_rows
+                            : m_computeThinU ? m_diagSize
+                            : 0);
+  if(ColsAtCompileTime==Dynamic)
+    m_matrixV.resize(m_cols, m_computeFullV ? m_cols
+                            : m_computeThinV ? m_diagSize
+                            : 0);
   m_workMatrix.resize(m_diagSize, m_diagSize);
+  
   if(m_cols>m_rows)   m_qr_precond_morecols.allocate(*this);
   if(m_rows>m_cols)   m_qr_precond_morerows.allocate(*this);
   if(m_rows!=m_cols)  m_scaledMatrix.resize(rows,cols);
 }
 
-template<typename MatrixType, int Options>
-JacobiSVD<MatrixType, Options>&
-JacobiSVD<MatrixType, Options>::compute(const MatrixType& matrix)
+template<typename MatrixType, int QRPreconditioner>
+JacobiSVD<MatrixType, QRPreconditioner>&
+JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
 {
   using std::abs;
-  allocate(matrix.rows(), matrix.cols());
+  allocate(matrix.rows(), matrix.cols(), computationOptions);
 
   // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
   // only worsening the precision of U and V as we accumulate more rotations
@@ -693,10 +697,10 @@
   else
   {
     m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale;
-    if(ShouldComputeFullU) m_matrixU.setIdentity(m_rows,m_rows);
-    if(ShouldComputeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
-    if(ShouldComputeFullV) m_matrixV.setIdentity(m_cols,m_cols);
-    if(ShouldComputeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
+    if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
+    if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
+    if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
+    if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
   }
 
   /*** step 2. The main Jacobi SVD iteration. ***/
@@ -722,7 +726,7 @@
           finished = false;
           // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
           // the complex to real operation returns true if the updated 2x2 block is not already diagonal
-          if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(m_workMatrix, *this, p, q, maxDiagEntry))
+          if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q, maxDiagEntry))
           {
             JacobiRotation<RealScalar> j_left, j_right;
             internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
@@ -799,11 +803,10 @@
   * \sa class JacobiSVD
   */
 template<typename Derived>
-template<int Options>
-JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options>
-MatrixBase<Derived>::jacobiSvd() const
+JacobiSVD<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
 {
-  return JacobiSVD<PlainObject, Options>(*this);
+  return JacobiSVD<PlainObject>(*this, computationOptions);
 }
 
 } // end namespace Eigen
diff --git a/Eigen/src/SVD/JacobiSVD_LAPACKE.h b/Eigen/src/SVD/JacobiSVD_LAPACKE.h
index 688df31..611ae8c 100644
--- a/Eigen/src/SVD/JacobiSVD_LAPACKE.h
+++ b/Eigen/src/SVD/JacobiSVD_LAPACKE.h
@@ -39,15 +39,15 @@
 
 /** \internal Specialization for the data types supported by LAPACKe */
 
-#define EIGEN_LAPACKE_SVD(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW, OPTIONS) \
+#define EIGEN_LAPACKE_SVD(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW) \
 template<> inline \
-JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTIONS>& \
-JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTIONS>::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix) \
+JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>& \
+JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix, unsigned int computationOptions) \
 { \
   typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
   /*typedef MatrixType::Scalar Scalar;*/ \
   /*typedef MatrixType::RealScalar RealScalar;*/ \
-  allocate(matrix.rows(), matrix.cols()); \
+  allocate(matrix.rows(), matrix.cols(), computationOptions); \
 \
   /*const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();*/ \
   m_nonzeroSingularValues = m_diagSize; \
@@ -56,14 +56,14 @@
   lapack_int matrix_order = LAPACKE_COLROW; \
   char jobu, jobvt; \
   LAPACKE_TYPE *u, *vt, dummy; \
-  jobu  = (ShouldComputeFullU) ? 'A' : (ShouldComputeThinU) ? 'S' : 'N'; \
-  jobvt = (ShouldComputeFullV) ? 'A' : (ShouldComputeThinV) ? 'S' : 'N'; \
+  jobu  = (m_computeFullU) ? 'A' : (m_computeThinU) ? 'S' : 'N'; \
+  jobvt = (m_computeFullV) ? 'A' : (m_computeThinV) ? 'S' : 'N'; \
   if (computeU()) { \
     ldu  = internal::convert_index<lapack_int>(m_matrixU.outerStride()); \
     u    = (LAPACKE_TYPE*)m_matrixU.data(); \
   } else { ldu=1; u=&dummy; }\
   MatrixType localV; \
-  lapack_int vt_rows = (ShouldComputeFullV) ? internal::convert_index<lapack_int>(m_cols) : (ShouldComputeThinV) ? internal::convert_index<lapack_int>(m_diagSize) : 1; \
+  lapack_int vt_rows = (m_computeFullV) ? internal::convert_index<lapack_int>(m_cols) : (m_computeThinV) ? internal::convert_index<lapack_int>(m_diagSize) : 1; \
   if (computeV()) { \
     localV.resize(vt_rows, m_cols); \
     ldvt  = internal::convert_index<lapack_int>(localV.outerStride()); \
@@ -78,26 +78,15 @@
   return *this; \
 }
 
-#define EIGEN_LAPACK_SVD_OPTIONS(OPTIONS) \
-  EIGEN_LAPACKE_SVD(double,   double,                double, d, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
-  EIGEN_LAPACKE_SVD(float,    float,                 float , s, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
-  EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
-  EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float,  float , c, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
-\
-  EIGEN_LAPACKE_SVD(double,   double,                double, d, RowMajor, LAPACK_ROW_MAJOR, OPTIONS) \
-  EIGEN_LAPACKE_SVD(float,    float,                 float , s, RowMajor, LAPACK_ROW_MAJOR, OPTIONS) \
-  EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, RowMajor, LAPACK_ROW_MAJOR, OPTIONS) \
-  EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float,  float , c, RowMajor, LAPACK_ROW_MAJOR, OPTIONS)
+EIGEN_LAPACKE_SVD(double,   double,                double, d, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_SVD(float,    float,                 float , s, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float,  float , c, ColMajor, LAPACK_COL_MAJOR)
 
-EIGEN_LAPACK_SVD_OPTIONS(0)
-EIGEN_LAPACK_SVD_OPTIONS(ComputeThinU)
-EIGEN_LAPACK_SVD_OPTIONS(ComputeThinV)
-EIGEN_LAPACK_SVD_OPTIONS(ComputeFullU)
-EIGEN_LAPACK_SVD_OPTIONS(ComputeFullV)
-EIGEN_LAPACK_SVD_OPTIONS(ComputeThinU | ComputeThinV)
-EIGEN_LAPACK_SVD_OPTIONS(ComputeFullU | ComputeFullV)
-EIGEN_LAPACK_SVD_OPTIONS(ComputeThinU | ComputeFullV)
-EIGEN_LAPACK_SVD_OPTIONS(ComputeFullU | ComputeThinV)
+EIGEN_LAPACKE_SVD(double,   double,                double, d, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_SVD(float,    float,                 float , s, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float,  float , c, RowMajor, LAPACK_ROW_MAJOR)
 
 } // end namespace Eigen
 
diff --git a/Eigen/src/SVD/SVDBase.h b/Eigen/src/SVD/SVDBase.h
index 1ca3ac0..7ecaf21 100644
--- a/Eigen/src/SVD/SVDBase.h
+++ b/Eigen/src/SVD/SVDBase.h
@@ -21,7 +21,6 @@
 namespace Eigen {
 
 namespace internal {
-
 template<typename Derived> struct traits<SVDBase<Derived> >
  : traits<Derived>
 {
@@ -30,32 +29,6 @@
   typedef int StorageIndex;
   enum { Flags = 0 };
 };
-
-template<typename MatrixType, int Options>
-struct svd_traits : traits<MatrixType>
-{
-  enum {
-    ShouldComputeFullU = Options & ComputeFullU,
-    ShouldComputeThinU = Options & ComputeThinU,
-    ShouldComputeFullV = Options & ComputeFullV,
-    ShouldComputeThinV = Options & ComputeThinV,
-    DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime),
-    MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::MaxRowsAtCompileTime,MatrixType::MaxColsAtCompileTime),
-    MatrixUColsAtCompileTime = ShouldComputeFullU ? MatrixType::RowsAtCompileTime
-                             : ShouldComputeThinU ? DiagSizeAtCompileTime
-                             : Dynamic,
-    MatrixVColsAtCompileTime = ShouldComputeFullV ? MatrixType::ColsAtCompileTime
-                             : ShouldComputeThinV ? DiagSizeAtCompileTime
-                             : Dynamic,
-    MatrixUMaxColsAtCompileTime = ShouldComputeFullU ? MatrixType::MaxRowsAtCompileTime
-                                : ShouldComputeThinU ? MaxDiagSizeAtCompileTime
-                                : Dynamic,
-    MatrixVMaxColsAtCompileTime = ShouldComputeFullV ? MatrixType::MaxColsAtCompileTime
-                                : ShouldComputeThinV ? MaxDiagSizeAtCompileTime
-                                : Dynamic
-  };
-};
-
 }
 
 /** \ingroup SVD_Module
@@ -102,33 +75,19 @@
   typedef typename Eigen::internal::traits<SVDBase>::StorageIndex StorageIndex;
   typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
   enum {
-    ShouldComputeFullU = internal::traits<Derived>::ShouldComputeFullU,
-    ShouldComputeThinU = internal::traits<Derived>::ShouldComputeThinU,
-    ShouldComputeFullV = internal::traits<Derived>::ShouldComputeFullV,
-    ShouldComputeThinV = internal::traits<Derived>::ShouldComputeThinV,
     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+    DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
-    MatrixOptions = MatrixType::Options,
-    MatrixUColsAtCompileTime = internal::traits<Derived>::MatrixUColsAtCompileTime,
-    MatrixVColsAtCompileTime = internal::traits<Derived>::MatrixVColsAtCompileTime,
-    MatrixUMaxColsAtCompileTime = internal::traits<Derived>::MatrixUMaxColsAtCompileTime,
-    MatrixVMaxColsAtCompileTime = internal::traits<Derived>::MatrixVMaxColsAtCompileTime
+    MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
+    MatrixOptions = MatrixType::Options
   };
 
-  EIGEN_STATIC_ASSERT(!(ShouldComputeFullU != 0 && ShouldComputeThinU != 0), "SVDBase: Cannot request both full and thin U")
-  EIGEN_STATIC_ASSERT(!(ShouldComputeFullV != 0 && ShouldComputeThinV != 0), "SVDBase: Cannot request both full and thin V")
-
-  typedef typename internal::make_proper_matrix_type<
-    Scalar, RowsAtCompileTime, MatrixUColsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MatrixUMaxColsAtCompileTime
-  >::type MatrixUType;
-  typedef typename internal::make_proper_matrix_type<
-    Scalar, ColsAtCompileTime, MatrixVColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MatrixVMaxColsAtCompileTime
-  >::type MatrixVType;
-
+  typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
+  typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
   typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
-
+  
   Derived& derived() { return *static_cast<Derived*>(this); }
   const Derived& derived() const { return *static_cast<const Derived*>(this); }
 
@@ -248,9 +207,9 @@
   }
 
   /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
-  EIGEN_CONSTEXPR inline bool computeU() const { return ShouldComputeFullU != 0 || ShouldComputeThinU != 0; }
+  inline bool computeU() const { return m_computeFullU || m_computeThinU; }
   /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
-  EIGEN_CONSTEXPR inline bool computeV() const { return ShouldComputeFullV != 0 || ShouldComputeThinV != 0; }
+  inline bool computeV() const { return m_computeFullV || m_computeThinV; }
 
   inline Index rows() const { return m_rows; }
   inline Index cols() const { return m_cols; }
@@ -307,13 +266,16 @@
   }
 
   // return true if already allocated
-  bool allocate(Index rows, Index cols);
+  bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
 
   MatrixUType m_matrixU;
   MatrixVType m_matrixV;
   SingularValuesType m_singularValues;
   ComputationInfo m_info;
   bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
+  bool m_computeFullU, m_computeThinU;
+  bool m_computeFullV, m_computeThinV;
+  unsigned int m_computationOptions;
   Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
   RealScalar m_prescribedThreshold;
 
@@ -326,8 +288,15 @@
       m_isInitialized(false),
       m_isAllocated(false),
       m_usePrescribedThreshold(false),
+      m_computeFullU(false),
+      m_computeThinU(false),
+      m_computeFullV(false),
+      m_computeThinV(false),
+      m_computationOptions(0),
       m_rows(-1), m_cols(-1), m_diagSize(0)
   { }
+
+
 };
 
 #ifndef EIGEN_PARSED_BY_DOXYGEN
@@ -361,14 +330,15 @@
 }
 #endif
 
-template<typename Derived>
-bool SVDBase<Derived>::allocate(Index rows, Index cols)
+template<typename MatrixType>
+bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
 {
   eigen_assert(rows >= 0 && cols >= 0);
 
   if (m_isAllocated &&
       rows == m_rows &&
-      cols == m_cols)
+      cols == m_cols &&
+      computationOptions == m_computationOptions)
   {
     return true;
   }
@@ -378,13 +348,22 @@
   m_info = Success;
   m_isInitialized = false;
   m_isAllocated = true;
+  m_computationOptions = computationOptions;
+  m_computeFullU = (computationOptions & ComputeFullU) != 0;
+  m_computeThinU = (computationOptions & ComputeThinU) != 0;
+  m_computeFullV = (computationOptions & ComputeFullV) != 0;
+  m_computeThinV = (computationOptions & ComputeThinV) != 0;
+  eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
+  eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
+  eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
+	       "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
 
   m_diagSize = (std::min)(m_rows, m_cols);
   m_singularValues.resize(m_diagSize);
   if(RowsAtCompileTime==Dynamic)
-    m_matrixU.resize(m_rows, ShouldComputeFullU ? m_rows : ShouldComputeThinU ? m_diagSize : 0);
+    m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0);
   if(ColsAtCompileTime==Dynamic)
-    m_matrixV.resize(m_cols, ShouldComputeFullV ? m_cols : ShouldComputeThinV ? m_diagSize : 0);
+    m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0);
 
   return false;
 }
diff --git a/bench/dense_solvers.cpp b/bench/dense_solvers.cpp
index 11c755b..24343dc 100644
--- a/bench/dense_solvers.cpp
+++ b/bench/dense_solvers.cpp
@@ -38,6 +38,8 @@
     A = A*A.adjoint();
   BenchTimer t_llt, t_ldlt, t_lu, t_fplu, t_qr, t_cpqr, t_cod, t_fpqr, t_jsvd, t_bdcsvd;
 
+  int svd_opt = ComputeThinU|ComputeThinV;
+  
   int tries = 5;
   int rep = 1000/size;
   if(rep==0) rep = 1;
@@ -51,8 +53,8 @@
   ColPivHouseholderQR<Mat> cpqr(A.rows(),A.cols());
   CompleteOrthogonalDecomposition<Mat> cod(A.rows(),A.cols());
   FullPivHouseholderQR<Mat> fpqr(A.rows(),A.cols());
-  JacobiSVD<MatDyn, ComputeThinU|ComputeThinV> jsvd(A.rows(),A.cols());
-  BDCSVD<MatDyn, ComputeThinU|ComputeThinV> bdcsvd(A.rows(),A.cols());
+  JacobiSVD<MatDyn> jsvd(A.rows(),A.cols());
+  BDCSVD<MatDyn> bdcsvd(A.rows(),A.cols());
   
   BENCH(t_llt, tries, rep, compute_norm_equation(llt,A));
   BENCH(t_ldlt, tries, rep, compute_norm_equation(ldlt,A));
@@ -65,9 +67,9 @@
   if(size*rows<=10000000)
     BENCH(t_fpqr, tries, rep, compute(fpqr,A));
   if(size<500) // JacobiSVD is really too slow for too large matrices
-    BENCH(t_jsvd, tries, rep, jsvd.compute(A));
+    BENCH(t_jsvd, tries, rep, jsvd.compute(A,svd_opt));
 //   if(size*rows<=20000000)
-    BENCH(t_bdcsvd, tries, rep, bdcsvd.compute(A));
+    BENCH(t_bdcsvd, tries, rep, bdcsvd.compute(A,svd_opt));
   
   results["LLT"][id] = t_llt.best();
   results["LDLT"][id] = t_ldlt.best();
diff --git a/doc/UsingBlasLapackBackends.dox b/doc/UsingBlasLapackBackends.dox
index 4572820..caa5971 100644
--- a/doc/UsingBlasLapackBackends.dox
+++ b/doc/UsingBlasLapackBackends.dox
@@ -101,8 +101,8 @@
 ?geqp3
 \endcode</td></tr>
 <tr class="alt"><td>Singular value decomposition \n \c EIGEN_USE_LAPACKE </td><td>\code
-JacobiSVD<MatrixXd, ComputeThinV> svd;
-svd.compute(m1);
+JacobiSVD<MatrixXd> svd;
+svd.compute(m1, ComputeThinV);
 \endcode</td><td>\code
 ?gesvd
 \endcode</td></tr>
diff --git a/doc/examples/TutorialLinAlgSVDSolve.cpp b/doc/examples/TutorialLinAlgSVDSolve.cpp
index 7bbbeae..f109f04 100644
--- a/doc/examples/TutorialLinAlgSVDSolve.cpp
+++ b/doc/examples/TutorialLinAlgSVDSolve.cpp
@@ -11,5 +11,5 @@
    VectorXf b = VectorXf::Random(3);
    cout << "Here is the right hand side b:\n" << b << endl;
    cout << "The least-squares solution is:\n"
-        << A.template bdcSvd<ComputeThinU | ComputeThinV>().solve(b) << endl;
+        << A.bdcSvd(ComputeThinU | ComputeThinV).solve(b) << endl;
 }
diff --git a/doc/snippets/JacobiSVD_basic.cpp b/doc/snippets/JacobiSVD_basic.cpp
index 6c21baf..ab24b9b 100644
--- a/doc/snippets/JacobiSVD_basic.cpp
+++ b/doc/snippets/JacobiSVD_basic.cpp
@@ -1,6 +1,6 @@
 MatrixXf m = MatrixXf::Random(3,2);
 cout << "Here is the matrix m:" << endl << m << endl;
-JacobiSVD<MatrixXf, ComputeThinU | ComputeThinV> svd(m);
+JacobiSVD<MatrixXf> svd(m, ComputeThinU | ComputeThinV);
 cout << "Its singular values are:" << endl << svd.singularValues() << endl;
 cout << "Its left singular vectors are the columns of the thin U matrix:" << endl << svd.matrixU() << endl;
 cout << "Its right singular vectors are the columns of the thin V matrix:" << endl << svd.matrixV() << endl;
diff --git a/lapack/svd.cpp b/lapack/svd.cpp
index 424f253..77b302b 100644
--- a/lapack/svd.cpp
+++ b/lapack/svd.cpp
@@ -10,7 +10,6 @@
 #include "lapack_common.h"
 #include <Eigen/SVD>
 
-
 // computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer
 EIGEN_LAPACK_FUNC(gesdd,(char *jobz, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
                          EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int * /*iwork*/, int *info))
@@ -48,97 +47,40 @@
   
   PlainMatrixType mat(*m,*n);
   mat = matrix(a,*m,*n,*lda);
+  
+  int option = *jobz=='A' ? ComputeFullU|ComputeFullV
+             : *jobz=='S' ? ComputeThinU|ComputeThinV
+             : *jobz=='O' ? ComputeThinU|ComputeThinV
+             : 0;
+
+  BDCSVD<PlainMatrixType> svd(mat,option);
+  
+  make_vector(s,diag_size) = svd.singularValues().head(diag_size);
 
   if(*jobz=='A')
   {
-    BDCSVD<PlainMatrixType, ComputeFullU|ComputeFullV> svd(mat);
-    make_vector(s,diag_size) = svd.singularValues().head(diag_size);
-    matrix(u,*m,*m,*ldu)     = svd.matrixU();
-    matrix(vt,*n,*n,*ldvt)   = svd.matrixV().adjoint();
+    matrix(u,*m,*m,*ldu)   = svd.matrixU();
+    matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
   }
   else if(*jobz=='S')
   {
-    BDCSVD<PlainMatrixType, ComputeThinU|ComputeThinV> svd(mat);
-    make_vector(s,diag_size)      = svd.singularValues().head(diag_size);
     matrix(u,*m,diag_size,*ldu)   = svd.matrixU();
     matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint();
   }
   else if(*jobz=='O' && *m>=*n)
   {
-    BDCSVD<PlainMatrixType, ComputeThinU|ComputeThinV> svd(mat);
-    make_vector(s,diag_size) = svd.singularValues().head(diag_size);
-    matrix(a,*m,*n,*lda)     = svd.matrixU();
-    matrix(vt,*n,*n,*ldvt)   = svd.matrixV().adjoint();
+    matrix(a,*m,*n,*lda)   = svd.matrixU();
+    matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
   }
   else if(*jobz=='O')
   {
-    BDCSVD<PlainMatrixType, ComputeThinU|ComputeThinV> svd(mat);
-    make_vector(s,diag_size)    = svd.singularValues().head(diag_size);
     matrix(u,*m,*m,*ldu)        = svd.matrixU();
     matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint();
   }
-  else 
-  {
-    BDCSVD<PlainMatrixType> svd(mat);
-    make_vector(s,diag_size)    = svd.singularValues().head(diag_size);
-  }
     
   return 0;
 }
 
-
-template<typename MatrixType, int Options>
-void gesvdAssignmentHelper(MatrixType& mat, char* jobu, char* jobv, int* m, int* n, int diag_size, Scalar* a, int* lda, RealScalar* s, Scalar* u, int* ldu, Scalar* vt, int* ldvt)
-{
-  JacobiSVD<MatrixType, Options> svd(mat);
-  make_vector(s,diag_size) = svd.singularValues().head(diag_size);
-  {
-        if(*jobu=='A') matrix(u,*m,*m,*ldu)           = svd.matrixU();
-  else  if(*jobu=='S') matrix(u,*m,diag_size,*ldu)    = svd.matrixU();
-  else  if(*jobu=='O') matrix(a,*m,diag_size,*lda)    = svd.matrixU();
-  }
-  {
-        if(*jobv=='A') matrix(vt,*n,*n,*ldvt)         = svd.matrixV().adjoint();
-  else  if(*jobv=='S') matrix(vt,diag_size,*n,*ldvt)  = svd.matrixV().adjoint();
-  else  if(*jobv=='O') matrix(a,diag_size,*n,*lda)    = svd.matrixV().adjoint();
-  }
-}
-
-template<typename MatrixType, int Options, typename ...Args>
-void gesvdSetVOptions(MatrixType& mat, char* jobu, char* jobv, Args... args)
-{
-  if (*jobv=='A')
-  {
-    gesvdAssignmentHelper<MatrixType, Options | ComputeFullV>(mat, jobu, jobv, args...);
-  }
-  else if (*jobv=='S' || *jobv=='O')
-  {
-    gesvdAssignmentHelper<MatrixType, Options | ComputeThinV>(mat, jobu, jobv, args...);
-  }
-  else 
-  {
-    gesvdAssignmentHelper<MatrixType, Options>(mat, jobu, jobv, args...);
-  }
-}
-
-
-template<typename MatrixType, typename ...Args>
-void gesvdSetUOptions(MatrixType& mat, char* jobu, char* jobv, Args... args)
-{
-  if (*jobu=='A')
-  {
-    gesvdSetVOptions<MatrixType, ComputeFullU>(mat, jobu, jobv, args...);
-  }
-  else if (*jobu=='S' || *jobu=='O')
-  {
-    gesvdSetVOptions<MatrixType, ComputeThinU>(mat, jobu, jobv, args...);
-  }
-  else 
-  {
-    gesvdSetVOptions<MatrixType, 0>(mat, jobu, jobv, args...);
-  }
-}
-
 // computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm
 EIGEN_LAPACK_FUNC(gesvd,(char *jobu, char *jobv, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
                          EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int *info))
@@ -175,8 +117,22 @@
   
   PlainMatrixType mat(*m,*n);
   mat = matrix(a,*m,*n,*lda);
-
-  gesvdSetUOptions<PlainMatrixType>(mat, jobu, jobv, m, n, diag_size, a, lda, s, u, ldu, vt, ldvt); 
   
+  int option = (*jobu=='A' ? ComputeFullU : *jobu=='S' || *jobu=='O' ? ComputeThinU : 0)
+             | (*jobv=='A' ? ComputeFullV : *jobv=='S' || *jobv=='O' ? ComputeThinV : 0);
+  
+  JacobiSVD<PlainMatrixType> svd(mat,option);
+  
+  make_vector(s,diag_size) = svd.singularValues().head(diag_size);
+  {
+        if(*jobu=='A') matrix(u,*m,*m,*ldu)           = svd.matrixU();
+  else  if(*jobu=='S') matrix(u,*m,diag_size,*ldu)    = svd.matrixU();
+  else  if(*jobu=='O') matrix(a,*m,diag_size,*lda)    = svd.matrixU();
+  }
+  {
+        if(*jobv=='A') matrix(vt,*n,*n,*ldvt)         = svd.matrixV().adjoint();
+  else  if(*jobv=='S') matrix(vt,diag_size,*n,*ldvt)  = svd.matrixV().adjoint();
+  else  if(*jobv=='O') matrix(a,diag_size,*n,*lda)    = svd.matrixV().adjoint();
+  }
   return 0;
-}
\ No newline at end of file
+}
diff --git a/test/bdcsvd.cpp b/test/bdcsvd.cpp
index b4f92bf..f98cdca 100644
--- a/test/bdcsvd.cpp
+++ b/test/bdcsvd.cpp
@@ -19,11 +19,26 @@
 #include <iostream>
 #include <Eigen/LU>
 
+
 #define SVD_DEFAULT(M) BDCSVD<M>
 #define SVD_FOR_MIN_NORM(M) BDCSVD<M>
-#define SVD_STATIC_OPTIONS(M, O) BDCSVD<M, O>
 #include "svd_common.h"
 
+// Check all variants of JacobiSVD
+template<typename MatrixType>
+void bdcsvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
+{
+  MatrixType m;
+  if(pickrandom) {
+    m.resizeLike(a);
+    svd_fill_random(m);
+  }
+  else
+    m = a;
+
+  CALL_SUBTEST(( svd_test_all_computation_options<BDCSVD<MatrixType> >(m, false)  ));
+}
+
 template<typename MatrixType>
 void bdcsvd_method()
 {
@@ -34,23 +49,28 @@
   VERIFY_IS_APPROX(m.bdcSvd().singularValues(), RealVecType::Ones());
   VERIFY_RAISES_ASSERT(m.bdcSvd().matrixU());
   VERIFY_RAISES_ASSERT(m.bdcSvd().matrixV());
-  VERIFY_IS_APPROX(m.template bdcSvd<ComputeFullU|ComputeFullV>().solve(m), m);
-  VERIFY_IS_APPROX(m.template bdcSvd<ComputeFullU|ComputeFullV>().transpose().solve(m), m);
-  VERIFY_IS_APPROX(m.template bdcSvd<ComputeFullU|ComputeFullV>().adjoint().solve(m), m);
+  VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).solve(m), m);
+  VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).transpose().solve(m), m);
+  VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).adjoint().solve(m), m);
 }
 
-// compare the Singular values returned with Jacobi and Bdc
+// Compare the Singular values returned with Jacobi and Bdc.
 template<typename MatrixType>
-void compare_bdc_jacobi(const MatrixType& a = MatrixType(), int algoswap = 16, bool random = true)
+void compare_bdc_jacobi(const MatrixType& a = MatrixType(), unsigned int computationOptions = 0, int algoswap = 16, bool random = true)
 {
   MatrixType m = random ? MatrixType::Random(a.rows(), a.cols()) : a;
 
-  BDCSVD<MatrixType> bdc_svd(m.rows(), m.cols());
+  BDCSVD<MatrixType> bdc_svd(m.rows(), m.cols(), computationOptions);
   bdc_svd.setSwitchSize(algoswap);
   bdc_svd.compute(m);
-  
+
   JacobiSVD<MatrixType> jacobi_svd(m);
   VERIFY_IS_APPROX(bdc_svd.singularValues(), jacobi_svd.singularValues());
+
+  if(computationOptions & ComputeFullU) VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
+  if(computationOptions & ComputeThinU) VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
+  if(computationOptions & ComputeFullV) VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
+  if(computationOptions & ComputeThinV) VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
 }
 
 // Verifies total deflation is **not** triggered.
@@ -71,59 +91,41 @@
          -20.794, 8.68496, -4.83103,
          -8.4981, -10.5451, 23.9072;
   }
-  compare_bdc_jacobi(m, algoswap, false);
-}
-
-template<typename MatrixType>
-void bdcsvd_all_options(const MatrixType& input = MatrixType())
-{
-  MatrixType m = input;
-  svd_fill_random(m);
-  svd_option_checks<MatrixType, 0>(m);
+  compare_bdc_jacobi(m, 0, algoswap, false);
 }
 
 EIGEN_DECLARE_TEST(bdcsvd)
 {
-  CALL_SUBTEST_3(( svd_verify_assert<Matrix3f>() ));
-  CALL_SUBTEST_4(( svd_verify_assert<Matrix4d>() ));
-  CALL_SUBTEST_7(( svd_verify_assert<Matrix<float, 30, 21> >() ));
-  CALL_SUBTEST_7(( svd_verify_assert<Matrix<float, 21, 30> >() ));
-  CALL_SUBTEST_9(( svd_verify_assert<Matrix<std::complex<double>, 20, 27> >() ));
+  CALL_SUBTEST_3(( svd_verify_assert<BDCSVD<Matrix3f>  >(Matrix3f()) ));
+  CALL_SUBTEST_4(( svd_verify_assert<BDCSVD<Matrix4d>  >(Matrix4d()) ));
+  CALL_SUBTEST_7(( svd_verify_assert<BDCSVD<MatrixXf>  >(MatrixXf(10,12)) ));
+  CALL_SUBTEST_8(( svd_verify_assert<BDCSVD<MatrixXcd> >(MatrixXcd(7,5)) ));
 
-  CALL_SUBTEST_101(( svd_all_trivial_2x2(bdcsvd_all_options<Matrix2cd>) ));
-  CALL_SUBTEST_102(( svd_all_trivial_2x2(bdcsvd_all_options<Matrix2d>) ));
+  CALL_SUBTEST_101(( svd_all_trivial_2x2(bdcsvd<Matrix2cd>) ));
+  CALL_SUBTEST_102(( svd_all_trivial_2x2(bdcsvd<Matrix2d>) ));
 
   for(int i = 0; i < g_repeat; i++) {
+    CALL_SUBTEST_3(( bdcsvd<Matrix3f>() ));
+    CALL_SUBTEST_4(( bdcsvd<Matrix4d>() ));
+    CALL_SUBTEST_5(( bdcsvd<Matrix<float,3,5> >() ));
+
     int r = internal::random<int>(1, EIGEN_TEST_MAX_SIZE/2),
         c = internal::random<int>(1, EIGEN_TEST_MAX_SIZE/2);
 
     TEST_SET_BUT_UNUSED_VARIABLE(r)
     TEST_SET_BUT_UNUSED_VARIABLE(c)
 
-    CALL_SUBTEST_7((  compare_bdc_jacobi<MatrixXf>(MatrixXf(r,c)) ));
-    CALL_SUBTEST_10(( compare_bdc_jacobi<MatrixXd>(MatrixXd(r,c)) ));
-    CALL_SUBTEST_8((  compare_bdc_jacobi<MatrixXcd>(MatrixXcd(r,c)) ));
+    CALL_SUBTEST_6((  bdcsvd(Matrix<double,Dynamic,2>(r,2)) ));
+    CALL_SUBTEST_7((  bdcsvd(MatrixXf(r,c)) ));
+    CALL_SUBTEST_7((  compare_bdc_jacobi(MatrixXf(r,c)) ));
+    CALL_SUBTEST_10(( bdcsvd(MatrixXd(r,c)) ));
+    CALL_SUBTEST_10(( compare_bdc_jacobi(MatrixXd(r,c)) ));
+    CALL_SUBTEST_8((  bdcsvd(MatrixXcd(r,c)) ));
+    CALL_SUBTEST_8((  compare_bdc_jacobi(MatrixXcd(r,c)) ));
+
     // Test on inf/nan matrix
-    CALL_SUBTEST_7(  (svd_inf_nan<MatrixXf>()) );
-    CALL_SUBTEST_10( (svd_inf_nan<MatrixXd>()) );
-
-    // Verify some computations using all combinations of the Options template parameter.
-    CALL_SUBTEST_3(( bdcsvd_all_options<Matrix3f>() ));
-    CALL_SUBTEST_3(( bdcsvd_all_options<Matrix<float, 2, 3> >() ));
-    CALL_SUBTEST_4(( bdcsvd_all_options<Matrix<double, 20, 17> >() ));
-    CALL_SUBTEST_4(( bdcsvd_all_options<Matrix<double, 17, 20> >() ));
-    CALL_SUBTEST_5(( bdcsvd_all_options<Matrix<double, Dynamic, 30> >(Matrix<double, Dynamic, 30>(r, 30)) ));
-    CALL_SUBTEST_5(( bdcsvd_all_options<Matrix<double, 20, Dynamic> >(Matrix<double, 20, Dynamic>(20, c)) ));
-    CALL_SUBTEST_7(( bdcsvd_all_options<MatrixXf>(MatrixXf(r, c)) ));
-    CALL_SUBTEST_8(( bdcsvd_all_options<MatrixXcd>(MatrixXcd(r, c)) ));
-    CALL_SUBTEST_10(( bdcsvd_all_options<MatrixXd>(MatrixXd(r, c)) ));
-    CALL_SUBTEST_14(( bdcsvd_all_options<Matrix<double, 20, 27, RowMajor>>() ));
-    CALL_SUBTEST_14(( bdcsvd_all_options<Matrix<double, 27, 20, RowMajor>>() ));
-
-    CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, ColMajor, 20, 35>, ColPivHouseholderQRPreconditioner>(r, c) ));
-    CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, ColMajor, 35, 20>, HouseholderQRPreconditioner>(r, c) ));
-    CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, RowMajor, 20, 35>, ColPivHouseholderQRPreconditioner>(r, c) ));
-    CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, RowMajor, 35, 20>, HouseholderQRPreconditioner>(r, c) ));
+    CALL_SUBTEST_7(  (svd_inf_nan<BDCSVD<MatrixXf>, MatrixXf>()) );
+    CALL_SUBTEST_10( (svd_inf_nan<BDCSVD<MatrixXd>, MatrixXd>()) );
   }
 
   // test matrixbase method
diff --git a/test/boostmultiprec.cpp b/test/boostmultiprec.cpp
index e2fc9a8..e83e970 100644
--- a/test/boostmultiprec.cpp
+++ b/test/boostmultiprec.cpp
@@ -200,8 +200,8 @@
     TEST_SET_BUT_UNUSED_VARIABLE(s)
   }
 
-  CALL_SUBTEST_9(( jacobisvd_all_options(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
-  CALL_SUBTEST_10(( bdcsvd_all_options(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
+  CALL_SUBTEST_9(( jacobisvd(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
+  CALL_SUBTEST_10(( bdcsvd(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
 
   CALL_SUBTEST_11(( test_simplicial_cholesky_T<Real,int,ColMajor>() ));
 }
diff --git a/test/geo_alignedbox.cpp b/test/geo_alignedbox.cpp
index e4dab32..7b1684f 100644
--- a/test/geo_alignedbox.cpp
+++ b/test/geo_alignedbox.cpp
@@ -211,7 +211,7 @@
   // https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-7/103/2016/isprs-annals-III-7-103-2016.pdf
   const MatrixType rand = MatrixType::Random();
   const MatrixType q = rand.householderQr().householderQ();
-  const JacobiSVD<MatrixType, ComputeFullU | ComputeFullV> svd(q);
+  const JacobiSVD<MatrixType> svd = q.jacobiSvd(ComputeFullU | ComputeFullV);
   const typename MatrixType::Scalar det = (svd.matrixU() * svd.matrixV().transpose()).determinant();
   MatrixType diag = rand.Identity();
   diag(MatrixType::RowsAtCompileTime - 1, MatrixType::ColsAtCompileTime - 1) = det;
diff --git a/test/jacobisvd.cpp b/test/jacobisvd.cpp
index 8966b4c..5b15c5a 100644
--- a/test/jacobisvd.cpp
+++ b/test/jacobisvd.cpp
@@ -16,9 +16,49 @@
 
 #define SVD_DEFAULT(M) JacobiSVD<M>
 #define SVD_FOR_MIN_NORM(M) JacobiSVD<M,ColPivHouseholderQRPreconditioner>
-#define SVD_STATIC_OPTIONS(M, O) JacobiSVD<M, O>
 #include "svd_common.h"
 
+// Check all variants of JacobiSVD
+template<typename MatrixType>
+void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
+{
+  MatrixType m = a;
+  if(pickrandom)
+    svd_fill_random(m);
+
+  CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> >(m, true)  )); // check full only
+  CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>  >(m, false) ));
+  CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, HouseholderQRPreconditioner>        >(m, false) ));
+  if(m.rows()==m.cols())
+    CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, NoQRPreconditioner>               >(m, false) ));
+}
+
+template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m)
+{
+  svd_verify_assert<JacobiSVD<MatrixType> >(m);
+  svd_verify_assert<JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> >(m, true);
+  svd_verify_assert<JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner> >(m);
+  svd_verify_assert<JacobiSVD<MatrixType, HouseholderQRPreconditioner> >(m);
+  Index rows = m.rows();
+  Index cols = m.cols();
+
+  enum {
+    ColsAtCompileTime = MatrixType::ColsAtCompileTime
+  };
+
+
+  MatrixType a = MatrixType::Zero(rows, cols);
+  a.setZero();
+
+  if (ColsAtCompileTime == Dynamic)
+  {
+    JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
+    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
+    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
+    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
+  }
+}
+
 template<typename MatrixType>
 void jacobisvd_method()
 {
@@ -29,47 +69,9 @@
   VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones());
   VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU());
   VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV());
-  VERIFY_IS_APPROX(m.template jacobiSvd<ComputeFullU|ComputeFullV>().solve(m), m);
-  VERIFY_IS_APPROX(m.template jacobiSvd<ComputeFullU|ComputeFullV>().transpose().solve(m), m);
-  VERIFY_IS_APPROX(m.template jacobiSvd<ComputeFullU|ComputeFullV>().adjoint().solve(m), m);
-}
-
-template<typename MatrixType>
-void jacobisvd_all_options(const MatrixType& input = MatrixType())
-{
-  MatrixType m = input;
-  svd_fill_random(m);
-  svd_option_checks<MatrixType, 0 /* Default */>(m);
-  svd_option_checks<MatrixType, ColPivHouseholderQRPreconditioner>(m);
-  svd_option_checks<MatrixType, HouseholderQRPreconditioner>(m);
-  svd_option_checks_full_only<MatrixType, FullPivHouseholderQRPreconditioner>(m); // FullPiv only used when computing full unitaries
-}
-
-template<typename MatrixType>
-void jacobisvd_verify_assert(const MatrixType& m = MatrixType())
-{
-  svd_verify_assert<MatrixType, 0 /* Default */>(m);
-  svd_verify_assert<MatrixType, ColPivHouseholderQRPreconditioner>(m);
-  svd_verify_assert<MatrixType, HouseholderQRPreconditioner>(m);
-  svd_verify_assert_full_only<MatrixType, FullPivHouseholderQRPreconditioner>(m);
-}
-
-template<typename MatrixType>
-void jacobisvd_verify_inputs(const MatrixType& m = MatrixType()) {
-  // check defaults
-  typedef JacobiSVD<MatrixType> DefaultSVD;
-  DefaultSVD defaultSvd(m);
-  VERIFY((int)DefaultSVD::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner);
-  VERIFY(!defaultSvd.computeU());
-  VERIFY(!defaultSvd.computeV());
-
-  // ColPivHouseholderQR is always default in presence of other options.
-  VERIFY(( (int)JacobiSVD<MatrixType, ComputeThinU>::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner ));
-  VERIFY(( (int)JacobiSVD<MatrixType, ComputeThinV>::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner ));
-  VERIFY(( (int)JacobiSVD<MatrixType, ComputeThinU | ComputeThinV>::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner ));
-  VERIFY(( (int)JacobiSVD<MatrixType, ComputeFullU | ComputeFullV>::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner ));
-  VERIFY(( (int)JacobiSVD<MatrixType, ComputeThinU | ComputeFullV>::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner ));
-  VERIFY(( (int)JacobiSVD<MatrixType, ComputeFullU | ComputeThinV>::QRPreconditioner == (int)ColPivHouseholderQRPreconditioner ));
+  VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m);
+  VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).transpose().solve(m), m);
+  VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).adjoint().solve(m), m);
 }
 
 namespace Foo {
@@ -89,63 +91,45 @@
 
 EIGEN_DECLARE_TEST(jacobisvd)
 {
-  CALL_SUBTEST_4(( jacobisvd_verify_inputs<Matrix4d>() ));
-  CALL_SUBTEST_7(( jacobisvd_verify_inputs(Matrix<float, 10, Dynamic>(10, 12)) ));
-  CALL_SUBTEST_8(( jacobisvd_verify_inputs<Matrix<std::complex<double>, 7, 5> >() ));
-
-  CALL_SUBTEST_3(( jacobisvd_verify_assert<Matrix3f>() ));
-  CALL_SUBTEST_4(( jacobisvd_verify_assert<Matrix4d>() ));
-  CALL_SUBTEST_7(( jacobisvd_verify_assert<Matrix<float, 10, 12>>() ));
-  CALL_SUBTEST_7(( jacobisvd_verify_assert<Matrix<float, 12, 10>>() ));
-  CALL_SUBTEST_7(( jacobisvd_verify_assert<MatrixXf>(MatrixXf(10, 12)) ));
-  CALL_SUBTEST_8(( jacobisvd_verify_assert<MatrixXcd>(MatrixXcd(7, 5)) ));
+  CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
+  CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
+  CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
+  CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));
   
-  CALL_SUBTEST_11(svd_all_trivial_2x2(jacobisvd_all_options<Matrix2cd>));
-  CALL_SUBTEST_12(svd_all_trivial_2x2(jacobisvd_all_options<Matrix2d>));
+  CALL_SUBTEST_11(svd_all_trivial_2x2(jacobisvd<Matrix2cd>));
+  CALL_SUBTEST_12(svd_all_trivial_2x2(jacobisvd<Matrix2d>));
 
   for(int i = 0; i < g_repeat; i++) {
+    CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
+    CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
+    CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
+    CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
 
     int r = internal::random<int>(1, 30),
         c = internal::random<int>(1, 30);
     
     TEST_SET_BUT_UNUSED_VARIABLE(r)
     TEST_SET_BUT_UNUSED_VARIABLE(c)
-
-    // Verify some computations using all combinations of the Options template parameter.
-    CALL_SUBTEST_3(( jacobisvd_all_options<Matrix3f>() ));
-    CALL_SUBTEST_3(( jacobisvd_all_options<Matrix<float, 2, 3> >() ));
-    CALL_SUBTEST_4(( jacobisvd_all_options<Matrix4d>() ));
-    CALL_SUBTEST_4(( jacobisvd_all_options<Matrix<double, 10, 16> >() ));
-    CALL_SUBTEST_4(( jacobisvd_all_options<Matrix<double, 16, 10> >() ));
-    CALL_SUBTEST_5(( jacobisvd_all_options<Matrix<double, Dynamic, 16> >(Matrix<double, Dynamic, 16>(r, 16)) ));
-    CALL_SUBTEST_5(( jacobisvd_all_options<Matrix<double, 10, Dynamic> >(Matrix<double, 10, Dynamic>(10, c)) ));
-    CALL_SUBTEST_7(( jacobisvd_all_options<MatrixXf>( MatrixXf(r, c)) ));
-    CALL_SUBTEST_8(( jacobisvd_all_options<MatrixXcd>( MatrixXcd(r, c)) ));
-    CALL_SUBTEST_10(( jacobisvd_all_options<MatrixXd>( MatrixXd(r, c)) ));
-    CALL_SUBTEST_14(( jacobisvd_all_options<Matrix<double, 5, 7, RowMajor>>() ));
-    CALL_SUBTEST_14(( jacobisvd_all_options<Matrix<double, 7, 5, RowMajor>>() ));
     
-    MatrixXcd noQRTest = MatrixXcd(r, r);
-    svd_fill_random(noQRTest);
-    CALL_SUBTEST_16(( svd_option_checks<MatrixXcd, NoQRPreconditioner>(noQRTest) ));
-
-    CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, ColMajor, 13, 15>, ColPivHouseholderQRPreconditioner>(r, c) ));
-    CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, ColMajor, 15, 13>, HouseholderQRPreconditioner>(r, c) ));
-    CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, RowMajor, 13, 15>, ColPivHouseholderQRPreconditioner>(r, c) ));
-    CALL_SUBTEST_15(( svd_check_max_size_matrix<Matrix<float, Dynamic, Dynamic, RowMajor, 15, 13>, HouseholderQRPreconditioner>(r, c) ));
+    CALL_SUBTEST_10(( jacobisvd<MatrixXd>(MatrixXd(r,c)) ));
+    CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
+    CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
+    (void) r;
+    (void) c;
 
     // Test on inf/nan matrix
-    CALL_SUBTEST_7(  (svd_inf_nan<MatrixXf>()) );
-    CALL_SUBTEST_10( (svd_inf_nan<MatrixXd>()) );
+    CALL_SUBTEST_7(  (svd_inf_nan<JacobiSVD<MatrixXf>, MatrixXf>()) );
+    CALL_SUBTEST_10( (svd_inf_nan<JacobiSVD<MatrixXd>, MatrixXd>()) );
 
-    CALL_SUBTEST_13(( jacobisvd_verify_assert<Matrix<double, 6, 1>>() ));
-    CALL_SUBTEST_13(( jacobisvd_verify_assert<Matrix<double, 1, 6>>() ));
-    CALL_SUBTEST_13(( jacobisvd_verify_assert<Matrix<double, Dynamic, 1>>(Matrix<double, Dynamic, 1>(r)) ));
-    CALL_SUBTEST_13(( jacobisvd_verify_assert<Matrix<double, 1, Dynamic>>(Matrix<double, 1, Dynamic>(c)) ));
+    // bug1395 test compile-time vectors as input
+    CALL_SUBTEST_13(( jacobisvd_verify_assert(Matrix<double,6,1>()) ));
+    CALL_SUBTEST_13(( jacobisvd_verify_assert(Matrix<double,1,6>()) ));
+    CALL_SUBTEST_13(( jacobisvd_verify_assert(Matrix<double,Dynamic,1>(r)) ));
+    CALL_SUBTEST_13(( jacobisvd_verify_assert(Matrix<double,1,Dynamic>(c)) ));
   }
 
-  CALL_SUBTEST_7(( jacobisvd_all_options<MatrixXd>(MatrixXd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
-  CALL_SUBTEST_8(( jacobisvd_all_options<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
+  CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
+  CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
 
   // test matrixbase method
   CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() ));
diff --git a/test/nomalloc.cpp b/test/nomalloc.cpp
index 689a4cc..cb4c073 100644
--- a/test/nomalloc.cpp
+++ b/test/nomalloc.cpp
@@ -152,7 +152,7 @@
   x = fpQR.solve(b);
 
   // SVD module
-  Eigen::JacobiSVD<Matrix, ComputeFullU | ComputeFullV> jSVD; jSVD.compute(A);
+  Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV);
 }
 
 void test_zerosized() {
diff --git a/test/qr_colpivoting.cpp b/test/qr_colpivoting.cpp
index e251671..06f1643 100644
--- a/test/qr_colpivoting.cpp
+++ b/test/qr_colpivoting.cpp
@@ -55,7 +55,7 @@
   MatrixType exact_solution = MatrixType::Random(cols, cols2);
   MatrixType rhs = matrix * exact_solution;
   MatrixType cod_solution = cod.solve(rhs);
-  JacobiSVD<MatrixType, ComputeThinU | ComputeThinV> svd(matrix);
+  JacobiSVD<MatrixType> svd(matrix, ComputeThinU | ComputeThinV);
   MatrixType svd_solution = svd.solve(rhs);
   VERIFY_IS_APPROX(cod_solution, svd_solution);
 
@@ -88,7 +88,7 @@
   exact_solution.setRandom(Cols, Cols2);
   Matrix<Scalar, Rows, Cols2> rhs = matrix * exact_solution;
   Matrix<Scalar, Cols, Cols2> cod_solution = cod.solve(rhs);
-  JacobiSVD<MatrixType, ComputeFullU | ComputeFullV> svd(matrix);
+  JacobiSVD<MatrixType> svd(matrix, ComputeFullU | ComputeFullV);
   Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs);
   VERIFY_IS_APPROX(cod_solution, svd_solution);
 
diff --git a/test/svd_common.h b/test/svd_common.h
index 4091c6d..eae4c0b 100644
--- a/test/svd_common.h
+++ b/test/svd_common.h
@@ -16,10 +16,6 @@
 #error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
 #endif
 
-#ifndef SVD_STATIC_OPTIONS
-#error a macro SVD_STATIC_OPTIONS(MatrixType, Options) must be defined prior to including svd_common.h
-#endif
-
 #include "svd_fill.h"
 #include "solverbase.h"
 
@@ -59,8 +55,9 @@
 }
 
 // Compare partial SVD defined by computationOptions to a full SVD referenceSvd
-template<typename MatrixType, typename SvdType, int Options>
+template<typename SvdType, typename MatrixType>
 void svd_compare_to_full(const MatrixType& m,
+                         unsigned int computationOptions,
                          const SvdType& referenceSvd)
 {
   typedef typename MatrixType::RealScalar RealScalar;
@@ -69,18 +66,18 @@
   Index diagSize = (std::min)(rows, cols);
   RealScalar prec = test_precision<RealScalar>();
 
-  SVD_STATIC_OPTIONS(MatrixType, Options) svd(m);
+  SvdType svd(m, computationOptions);
 
   VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
   
-  if(Options & (ComputeFullV|ComputeThinV))
+  if(computationOptions & (ComputeFullV|ComputeThinV))
   {
     VERIFY( (svd.matrixV().adjoint()*svd.matrixV()).isIdentity(prec) );
     VERIFY_IS_APPROX( svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint(),
                       referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() * referenceSvd.matrixV().leftCols(diagSize).adjoint());
   }
   
-  if(Options & (ComputeFullU|ComputeThinU))
+  if(computationOptions & (ComputeFullU|ComputeThinU))
   {
     VERIFY( (svd.matrixU().adjoint()*svd.matrixU()).isIdentity(prec) );
     VERIFY_IS_APPROX( svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() * svd.matrixU().leftCols(diagSize).adjoint(),
@@ -88,18 +85,19 @@
   }
   
   // The following checks are not critical.
-  // For instance, with Dived&Conquer SVD, if only the factor 'V' is computed then different matrix-matrix product implementation will be used
+  // For instance, with Dived&Conquer SVD, if only the factor 'V' is computedt then different matrix-matrix product implementation will be used
   // and the resulting 'V' factor might be significantly different when the SVD decomposition is not unique, especially with single precision float.
   ++g_test_level;
-  if(Options & ComputeFullU)  VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
-  if(Options & ComputeThinU)  VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
-  if(Options & ComputeFullV)  VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
-  if(Options & ComputeThinV)  VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
+  if(computationOptions & ComputeFullU)  VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
+  if(computationOptions & ComputeThinU)  VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
+  if(computationOptions & ComputeFullV)  VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
+  if(computationOptions & ComputeThinV)  VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
   --g_test_level;
 }
 
+//
 template<typename SvdType, typename MatrixType>
-void svd_least_square(const MatrixType& m)
+void svd_least_square(const MatrixType& m, unsigned int computationOptions)
 {
   typedef typename MatrixType::Scalar Scalar;
   typedef typename MatrixType::RealScalar RealScalar;
@@ -115,7 +113,7 @@
   typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
 
   RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
-  SvdType svd(m);
+  SvdType svd(m, computationOptions);
 
        if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
   else if(internal::is_same<RealScalar,float>::value)  svd.setThreshold(2e-4);
@@ -164,9 +162,9 @@
   }
 }
 
-// check minimal norm solutions, the input matrix m is only used to recover problem size
-template<typename MatrixType, int Options>
-void svd_min_norm(const MatrixType& m)
+// check minimal norm solutions, the inoput matrix m is only used to recover problem size
+template<typename MatrixType>
+void svd_min_norm(const MatrixType& m, unsigned int computationOptions)
 {
   typedef typename MatrixType::Scalar Scalar;
   Index cols = m.cols();
@@ -201,7 +199,7 @@
   tmp.tail(cols-rank).setZero();
   SolutionType x21 = qr.householderQ() * tmp;
   // now check with SVD
-  SVD_STATIC_OPTIONS(MatrixType2, Options) svd2(m2);
+  SVD_FOR_MIN_NORM(MatrixType2) svd2(m2, computationOptions);
   SolutionType x22 = svd2.solve(rhs2);
   VERIFY_IS_APPROX(m2*x21, rhs2);
   VERIFY_IS_APPROX(m2*x22, rhs2);
@@ -214,7 +212,7 @@
   Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
   MatrixType3 m3 = C * m2;
   RhsType3 rhs3 = C * rhs2;
-  SVD_STATIC_OPTIONS(MatrixType3, Options) svd3(m3);
+  SVD_FOR_MIN_NORM(MatrixType3) svd3(m3, computationOptions);
   SolutionType x3 = svd3.solve(rhs3);
   VERIFY_IS_APPROX(m3*x3, rhs3);
   VERIFY_IS_APPROX(m3*x21, rhs3);
@@ -241,6 +239,57 @@
     check_solverbase<CMatrixType, MatrixType>(m, solver, rows, cols, cols2);
 }
 
+// Check full, compare_to_full, least_square, and min_norm for all possible compute-options
+template<typename SvdType, typename MatrixType>
+void svd_test_all_computation_options(const MatrixType& m, bool full_only)
+{
+//   if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
+//     return;
+  STATIC_CHECK(( internal::is_same<typename SvdType::StorageIndex,int>::value ));
+
+  SvdType fullSvd(m, ComputeFullU|ComputeFullV);
+  CALL_SUBTEST(( svd_check_full(m, fullSvd) ));
+  CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeFullV) ));
+  CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeFullV) ));
+  
+  #if defined __INTEL_COMPILER
+  // remark #111: statement is unreachable
+  #pragma warning disable 111
+  #endif
+
+  svd_test_solvers(m, fullSvd);
+
+  if(full_only)
+    return;
+
+  CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU, fullSvd) ));
+  CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullV, fullSvd) ));
+  CALL_SUBTEST(( svd_compare_to_full(m, 0, fullSvd) ));
+
+  if (MatrixType::ColsAtCompileTime == Dynamic) {
+    // thin U/V are only available with dynamic number of columns
+    CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
+    CALL_SUBTEST(( svd_compare_to_full(m,              ComputeThinV, fullSvd) ));
+    CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
+    CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU             , fullSvd) ));
+    CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
+    
+    CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeThinV) ));
+    CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeFullV) ));
+    CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeThinV) ));
+
+    CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeThinV) ));
+    CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeFullV) ));
+    CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeThinV) ));
+
+    // test reconstruction
+    Index diagSize = (std::min)(m.rows(), m.cols());
+    SvdType svd(m, ComputeThinU | ComputeThinV);
+    VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
+  }
+}
+
+
 // work around stupid msvc error when constructing at compile time an expression that involves
 // a division by zero, even if the numeric type has floating point
 template<typename Scalar>
@@ -249,32 +298,31 @@
 // workaround aggressive optimization in ICC
 template<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; }
 
-
 // This function verifies we don't iterate infinitely on nan/inf values,
 // and that info() returns InvalidInput.
-template<typename MatrixType>
+template<typename SvdType, typename MatrixType>
 void svd_inf_nan()
 {
-  SVD_STATIC_OPTIONS(MatrixType, ComputeFullU | ComputeFullV) svd;
+  SvdType svd;
   typedef typename MatrixType::Scalar Scalar;
   Scalar some_inf = Scalar(1) / zero<Scalar>();
   VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
-  svd.compute(MatrixType::Constant(10,10,some_inf));
+  svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
   VERIFY(svd.info() == InvalidInput);
 
   Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
   VERIFY(nan != nan);
-  svd.compute(MatrixType::Constant(10,10,nan));
+  svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);
   VERIFY(svd.info() == InvalidInput);  
 
   MatrixType m = MatrixType::Zero(10,10);
   m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
-  svd.compute(m);
+  svd.compute(m, ComputeFullU | ComputeFullV);
   VERIFY(svd.info() == InvalidInput);
 
   m = MatrixType::Zero(10,10);
   m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
-  svd.compute(m);
+  svd.compute(m, ComputeFullU | ComputeFullV);
   VERIFY(svd.info() == InvalidInput);
   
   // regression test for bug 791
@@ -282,7 +330,7 @@
   m << 0,    2*NumTraits<Scalar>::epsilon(),  0.5,
        0,   -0.5,                             0,
        nan,  0,                               0;
-  svd.compute(m);
+  svd.compute(m, ComputeFullU | ComputeFullV);
   VERIFY(svd.info() == InvalidInput);
   
   m.resize(4,4);
@@ -290,7 +338,7 @@
         0, 3, 1, 2e-308,
         1, 0, 1, nan,
         0, nan, nan, 0;
-  svd.compute(m);
+  svd.compute(m, ComputeFullU | ComputeFullV);
   VERIFY(svd.info() == InvalidInput);
 }
 
@@ -307,8 +355,8 @@
   Matrix2d M;
   M << -7.90884e-313, -4.94e-324,
                  0, 5.60844e-313;
-  SVD_STATIC_OPTIONS(Matrix2d, ComputeFullU | ComputeFullV) svd;
-  svd.compute(M);
+  SVD_DEFAULT(Matrix2d) svd;
+  svd.compute(M,ComputeFullU|ComputeFullV);
   CALL_SUBTEST( svd_check_full(M,svd) );
   
   // Check all 2x2 matrices made with the following coefficients:
@@ -319,7 +367,7 @@
   do
   {
     M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
-    svd.compute(M);
+    svd.compute(M,ComputeFullU|ComputeFullV);
     CALL_SUBTEST( svd_check_full(M,svd) );
 
     id(k)++;
@@ -342,13 +390,15 @@
         3.7841695601406358e+307,  2.4331702789740617e+306, -3.5235707140272905e+307,
        -8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307;
 
-  SVD_STATIC_OPTIONS(Matrix3d, ComputeFullU|ComputeFullV) svd3;
-  svd3.compute(M3); // just check we don't loop indefinitely
+  SVD_DEFAULT(Matrix3d) svd3;
+  svd3.compute(M3,ComputeFullU|ComputeFullV); // just check we don't loop indefinitely
   CALL_SUBTEST( svd_check_full(M3,svd3) );
 }
 
+// void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
+
 template<typename MatrixType>
-void svd_all_trivial_2x2( void (*cb)(const MatrixType&) )
+void svd_all_trivial_2x2( void (*cb)(const MatrixType&,bool) )
 {
   MatrixType M;
   VectorXd value_set(3);
@@ -359,7 +409,7 @@
   {
     M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
     
-    cb(M);
+    cb(M,false);
     
     id(k)++;
     if(id(k)>=value_set.size())
@@ -384,10 +434,22 @@
   internal::set_is_malloc_allowed(true);
   svd.compute(m);
   VERIFY_IS_APPROX(svd.singularValues(), v);
-  VERIFY_RAISES_ASSERT(svd.matrixU());
-  VERIFY_RAISES_ASSERT(svd.matrixV());
 
-  SVD_STATIC_OPTIONS(MatrixXf, ComputeFullU | ComputeFullV) svd2(3,3);
+  SVD_DEFAULT(MatrixXf) svd2(3,3);
+  internal::set_is_malloc_allowed(false);
+  svd2.compute(m);
+  internal::set_is_malloc_allowed(true);
+  VERIFY_IS_APPROX(svd2.singularValues(), v);
+  VERIFY_RAISES_ASSERT(svd2.matrixU());
+  VERIFY_RAISES_ASSERT(svd2.matrixV());
+  svd2.compute(m, ComputeFullU | ComputeFullV);
+  VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
+  VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
+  internal::set_is_malloc_allowed(false);
+  svd2.compute(m);
+  internal::set_is_malloc_allowed(true);
+
+  SVD_DEFAULT(MatrixXf) svd3(3,3,ComputeFullU|ComputeFullV);
   internal::set_is_malloc_allowed(false);
   svd2.compute(m);
   internal::set_is_malloc_allowed(true);
@@ -395,168 +457,65 @@
   VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
   VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
   internal::set_is_malloc_allowed(false);
-  svd2.compute(m);
+  svd2.compute(m, ComputeFullU|ComputeFullV);
   internal::set_is_malloc_allowed(true);
 }
 
-template<typename MatrixType, int QRPreconditioner = 0>
-void svd_verify_assert_full_only(const MatrixType& m = MatrixType())
+template<typename SvdType,typename MatrixType> 
+void svd_verify_assert(const MatrixType& m, bool fullOnly = false)
 {
-  enum {
-    RowsAtCompileTime = MatrixType::RowsAtCompileTime
-  };
-
-  typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType;
-  RhsType rhs = RhsType::Zero(m.rows());
-
-  SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd0;
-  VERIFY_RAISES_ASSERT(( svd0.matrixU() ));
-  VERIFY_RAISES_ASSERT(( svd0.singularValues() ));
-  VERIFY_RAISES_ASSERT(( svd0.matrixV() ));
-  VERIFY_RAISES_ASSERT(( svd0.solve(rhs) ));
-  VERIFY_RAISES_ASSERT(( svd0.transpose().solve(rhs) ));
-  VERIFY_RAISES_ASSERT(( svd0.adjoint().solve(rhs) ));
-
-  SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd1(m);
-  VERIFY_RAISES_ASSERT(( svd1.matrixU() ));
-  VERIFY_RAISES_ASSERT(( svd1.matrixV() ));
-  VERIFY_RAISES_ASSERT(( svd1.solve(rhs)));
-
-  SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU) svdFullU(m);
-  VERIFY_RAISES_ASSERT(( svdFullU.matrixV() ));
-  VERIFY_RAISES_ASSERT(( svdFullU.solve(rhs)));
-  SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullV) svdFullV(m);
-  VERIFY_RAISES_ASSERT(( svdFullV.matrixU() ));
-  VERIFY_RAISES_ASSERT(( svdFullV.solve(rhs)));
-}
-
-template<typename MatrixType, int QRPreconditioner = 0>
-void svd_verify_assert(const MatrixType& m = MatrixType())
-{
-  enum {
-    RowsAtCompileTime = MatrixType::RowsAtCompileTime
-  };
-
-  typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType;
-  RhsType rhs = RhsType::Zero(m.rows());
-
-  SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU) svdThinU(m);
-  VERIFY_RAISES_ASSERT(( svdThinU.matrixV() ));
-  VERIFY_RAISES_ASSERT(( svdThinU.solve(rhs)));
-  SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinV) svdThinV(m);
-  VERIFY_RAISES_ASSERT(( svdThinV.matrixU() ));
-  VERIFY_RAISES_ASSERT(( svdThinV.solve(rhs)));
-
-  svd_verify_assert_full_only<MatrixType, QRPreconditioner>(m);
-}
-
-template<typename MatrixType, int Options>
-void svd_compute_checks(const MatrixType& m)
-{
-  typedef SVD_STATIC_OPTIONS(MatrixType, Options) SVDType;
+  typedef typename MatrixType::Scalar Scalar;
+  Index rows = m.rows();
+  Index cols = m.cols();
 
   enum {
     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
-    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
-    DiagAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
-    MatrixURowsAtCompileTime = SVDType::MatrixUType::RowsAtCompileTime,
-    MatrixUColsAtCompileTime = SVDType::MatrixUType::ColsAtCompileTime,
-    MatrixVRowsAtCompileTime = SVDType::MatrixVType::RowsAtCompileTime,
-    MatrixVColsAtCompileTime = SVDType::MatrixVType::ColsAtCompileTime
+    ColsAtCompileTime = MatrixType::ColsAtCompileTime
   };
-  
-  SVDType staticSvd(m);
 
-  VERIFY(MatrixURowsAtCompileTime == RowsAtCompileTime);
-  VERIFY(MatrixVRowsAtCompileTime == ColsAtCompileTime);
-  if (Options & ComputeThinU) VERIFY(MatrixUColsAtCompileTime == DiagAtCompileTime);
-  if (Options & ComputeFullU) VERIFY(MatrixUColsAtCompileTime == RowsAtCompileTime);
-  if (Options & ComputeThinV) VERIFY(MatrixVColsAtCompileTime == DiagAtCompileTime);
-  if (Options & ComputeFullV) VERIFY(MatrixVColsAtCompileTime == ColsAtCompileTime);
+  typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
+  RhsType rhs(rows);
+  SvdType svd;
+  VERIFY_RAISES_ASSERT(svd.matrixU())
+  VERIFY_RAISES_ASSERT(svd.singularValues())
+  VERIFY_RAISES_ASSERT(svd.matrixV())
+  VERIFY_RAISES_ASSERT(svd.solve(rhs))
+  VERIFY_RAISES_ASSERT(svd.transpose().solve(rhs))
+  VERIFY_RAISES_ASSERT(svd.adjoint().solve(rhs))
+  MatrixType a = MatrixType::Zero(rows, cols);
+  a.setZero();
+  svd.compute(a, 0);
+  VERIFY_RAISES_ASSERT(svd.matrixU())
+  VERIFY_RAISES_ASSERT(svd.matrixV())
+  svd.singularValues();
+  VERIFY_RAISES_ASSERT(svd.solve(rhs))
 
-  if (Options & (ComputeThinU|ComputeFullU)) VERIFY(staticSvd.computeU());
-  else VERIFY(!staticSvd.computeU());
-  if (Options & (ComputeThinV|ComputeFullV)) VERIFY(staticSvd.computeV());
-  else VERIFY(!staticSvd.computeV());
+  svd.compute(a, ComputeFullU);
+  svd.matrixU();
+  VERIFY_RAISES_ASSERT(svd.matrixV())
+  VERIFY_RAISES_ASSERT(svd.solve(rhs))
+  svd.compute(a, ComputeFullV);
+  svd.matrixV();
+  VERIFY_RAISES_ASSERT(svd.matrixU())
+  VERIFY_RAISES_ASSERT(svd.solve(rhs))
 
-  if (staticSvd.computeU()) VERIFY(staticSvd.matrixU().isUnitary());
-  if (staticSvd.computeV()) VERIFY(staticSvd.matrixV().isUnitary());
-
-  if (staticSvd.computeU() && staticSvd.computeV())
+  if (!fullOnly && ColsAtCompileTime == Dynamic)
   {
-    svd_test_solvers(m, staticSvd);
-    svd_least_square<SVDType, MatrixType>(m);
-    // svd_min_norm generates non-square matrices so it can't be used with NoQRPreconditioner
-    if ((Options & internal::QRPreconditionerBits) != NoQRPreconditioner)
-      svd_min_norm<MatrixType, Options>(m);
+    svd.compute(a, ComputeThinU);
+    svd.matrixU();
+    VERIFY_RAISES_ASSERT(svd.matrixV())
+    VERIFY_RAISES_ASSERT(svd.solve(rhs))
+    svd.compute(a, ComputeThinV);
+    svd.matrixV();
+    VERIFY_RAISES_ASSERT(svd.matrixU())
+    VERIFY_RAISES_ASSERT(svd.solve(rhs))
   }
-}
-
-template<typename MatrixType, int QRPreconditioner = 0>
-void svd_option_checks(const MatrixType& m)
-{
-  // singular values only
-  svd_compute_checks<MatrixType, QRPreconditioner>(m);
-  // Thin only
-  svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU               >(m);
-  svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinV               >(m);
-  svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV>(m);
-  // Full only
-  svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU               >(m);
-  svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullV               >(m);
-  svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV>(m);
-  // Mixed
-  svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV>(m);
-  svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV>(m);
-
-  typedef SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) FullSvdType;
-  FullSvdType fullSvd(m);
-  svd_check_full(m, fullSvd);
-  svd_compare_to_full<MatrixType, FullSvdType, QRPreconditioner | ComputeFullU | ComputeFullV>(m, fullSvd);
-}
-
-template<typename MatrixType, int QRPreconditioner = 0>
-void svd_option_checks_full_only(const MatrixType& m)
-{
-  svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU>(m);
-  svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullV>(m);
-  svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV>(m);
-
-  SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m);
-  svd_check_full(m, fullSvd);
-}
-
-template<typename MatrixType, int QRPreconditioner = 0>
-void svd_check_max_size_matrix(int initialRows, int initialCols)
-{
-  enum {
-    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
-    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
-  };
-
-  int rows = MaxRowsAtCompileTime == Dynamic ? initialRows : (std::min)(initialRows, (int)MaxRowsAtCompileTime);
-  int cols = MaxColsAtCompileTime == Dynamic ? initialCols : (std::min)(initialCols, (int)MaxColsAtCompileTime);
-
-  MatrixType m(rows, cols);
-  SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV) thinSvd(m);
-  SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV) mixedSvd1(m);
-  SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV) mixedSvd2(m);
-  SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m);
-
-  MatrixType n(MaxRowsAtCompileTime, MaxColsAtCompileTime);
-  thinSvd.compute(n);
-  mixedSvd1.compute(n);
-  mixedSvd2.compute(n);
-  fullSvd.compute(n);
-
-  MatrixX<typename MatrixType::Scalar> dynamicMatrix(MaxRowsAtCompileTime + 1, MaxColsAtCompileTime + 1);
-
-  VERIFY_RAISES_ASSERT(thinSvd.compute(dynamicMatrix));
-  VERIFY_RAISES_ASSERT(mixedSvd1.compute(dynamicMatrix));
-  VERIFY_RAISES_ASSERT(mixedSvd2.compute(dynamicMatrix));
-  VERIFY_RAISES_ASSERT(fullSvd.compute(dynamicMatrix));
+  else
+  {
+    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
+    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
+  }
 }
 
 #undef SVD_DEFAULT
 #undef SVD_FOR_MIN_NORM
-#undef SVD_STATIC_OPTIONS