deleting hip specific files that are no longer required
diff --git a/test/hip_basic.cu b/test/hip_basic.cu
deleted file mode 100644
index 2e1bf94..0000000
--- a/test/hip_basic.cu
+++ /dev/null
@@ -1,172 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// workaround issue between gcc >= 4.7 and cuda 5.5
-#if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7)
-  #undef _GLIBCXX_ATOMIC_BUILTINS
-  #undef _GLIBCXX_USE_INT128
-#endif
-
-#define EIGEN_TEST_NO_LONGDOUBLE
-#define EIGEN_TEST_NO_COMPLEX
-#define EIGEN_TEST_FUNC hip_basic
-#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
-
-#include <hip/hip_runtime.h>
-
-#include "main.h"
-#include "hip_common.h"
-
-// Check that dense modules can be properly parsed by hipcc
-#include <Eigen/Dense>
-
-// struct Foo{
-//   EIGEN_DEVICE_FUNC
-//   void operator()(int i, const float* mats, float* vecs) const {
-//     using namespace Eigen;
-//   //   Matrix3f M(data);
-//   //   Vector3f x(data+9);
-//   //   Map<Vector3f>(data+9) = M.inverse() * x;
-//     Matrix3f M(mats+i/16);
-//     Vector3f x(vecs+i*3);
-//   //   using std::min;
-//   //   using std::sqrt;
-//     Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() *  x) / x.x();
-//     //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum();
-//   }
-// };
-
-template<typename T>
-struct coeff_wise {
-  EIGEN_DEVICE_FUNC
-  void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
-  {
-    using namespace Eigen;
-    T x1(in+i);
-    T x2(in+i+1);
-    T x3(in+i+2);
-    Map<T> res(out+i*T::MaxSizeAtCompileTime);
-    
-    res.array() += (in[0] * x1 + x2).array() * x3.array();
-  }
-};
-
-template<typename T>
-struct replicate {
-  EIGEN_DEVICE_FUNC
-  void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
-  {
-    using namespace Eigen;
-    T x1(in+i);
-    int step   = x1.size() * 4;
-    int stride = 3 * step;
-    
-    typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType;
-    MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2);
-    MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3);
-    MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3);
-  }
-};
-
-template<typename T>
-struct redux {
-  EIGEN_DEVICE_FUNC
-  void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
-  {
-    using namespace Eigen;
-    int N = 10;
-    T x1(in+i);
-    out[i*N+0] = x1.minCoeff();
-    out[i*N+1] = x1.maxCoeff();
-    out[i*N+2] = x1.sum();
-    out[i*N+3] = x1.prod();
-    out[i*N+4] = x1.matrix().squaredNorm();
-    out[i*N+5] = x1.matrix().norm();
-    out[i*N+6] = x1.colwise().sum().maxCoeff();
-    out[i*N+7] = x1.rowwise().maxCoeff().sum();
-    out[i*N+8] = x1.matrix().colwise().squaredNorm().sum();
-  }
-};
-
-template<typename T1, typename T2>
-struct prod_test {
-  EIGEN_DEVICE_FUNC
-  void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
-  {
-    using namespace Eigen;
-    typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3;
-    T1 x1(in+i);
-    T2 x2(in+i+1);
-    Map<T3> res(out+i*T3::MaxSizeAtCompileTime);
-    res += in[i] * x1 * x2;
-  }
-};
-
-template<typename T1, typename T2>
-struct diagonal {
-  EIGEN_DEVICE_FUNC
-  void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
-  {
-    using namespace Eigen;
-    T1 x1(in+i);
-    Map<T2> res(out+i*T2::MaxSizeAtCompileTime);
-    res += x1.diagonal();
-  }
-};
-
-template<typename T>
-struct eigenvalues {
-  EIGEN_DEVICE_FUNC
-  void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
-  {
-    using namespace Eigen;
-    typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
-    T M(in+i);
-    Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
-    T A = M*M.adjoint();
-    SelfAdjointEigenSolver<T> eig;
-    eig.computeDirect(M);
-    res = eig.eigenvalues();
-  }
-};
-
-void test_hip_basic()
-{
-  ei_test_init_hip();
-  
-  int nthreads = 100;
-  Eigen::VectorXf in, out;
-  
-  #ifndef __HIP_DEVICE_COMPILE__ 
-  int data_size = nthreads * 512;
-  in.setRandom(data_size);
-  out.setRandom(data_size);
-  #endif
-  
-  CALL_SUBTEST( run_and_compare_to_hip(coeff_wise<Vector3f>(), nthreads, in, out) );
-  CALL_SUBTEST( run_and_compare_to_hip(coeff_wise<Array44f>(), nthreads, in, out) );
-
-  // FIXME compile fails when we uncomment the followig two tests
-  // CALL_SUBTEST( run_and_compare_to_hip(replicate<Array4f>(), nthreads, in, out) );
-  // CALL_SUBTEST( run_and_compare_to_hip(replicate<Array33f>(), nthreads, in, out) );
-  
-  CALL_SUBTEST( run_and_compare_to_hip(redux<Array4f>(), nthreads, in, out) );
-  CALL_SUBTEST( run_and_compare_to_hip(redux<Matrix3f>(), nthreads, in, out) );
-  
-  CALL_SUBTEST( run_and_compare_to_hip(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) );
-  CALL_SUBTEST( run_and_compare_to_hip(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) );
-  
-  CALL_SUBTEST( run_and_compare_to_hip(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) );
-  CALL_SUBTEST( run_and_compare_to_hip(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
-
-  // FIXME : Runtime failure occurs when we uncomment the following two tests
-  // CALL_SUBTEST( run_and_compare_to_hip(eigenvalues<Matrix3f>(), nthreads, in, out) );
-  // CALL_SUBTEST( run_and_compare_to_hip(eigenvalues<Matrix2f>(), nthreads, in, out) );
-
-}
diff --git a/test/hip_common.h b/test/hip_common.h
deleted file mode 100644
index 251585c..0000000
--- a/test/hip_common.h
+++ /dev/null
@@ -1,103 +0,0 @@
-
-#ifndef EIGEN_TEST_HIP_COMMON_H
-#define EIGEN_TEST_HIP_COMMON_H
-
-#include "hip/hip_runtime.h"
-#include "hip/hip_runtime_api.h"
-#include <iostream>
-
-#ifndef __HIPCC__
-dim3 threadIdx, blockDim, blockIdx;
-#endif
-
-template<typename Kernel, typename Input, typename Output>
-void run_on_cpu(const Kernel& ker, int n, const Input& in, Output& out)
-{
-  for(int i=0; i<n; i++)
-    ker(i, in.data(), out.data());
-}
-
-
-template<typename Kernel, typename Input, typename Output>
-__global__ __attribute__((used))
-void run_on_hip_meta_kernel(const Kernel ker, int n, const Input* in, Output* out)
-{
-  int i = hipThreadIdx_x + hipBlockIdx_x*hipBlockDim_x;
-  if(i<n) {
-    ker(i, in, out);
-  }
-}
-
-
-template<typename Kernel, typename Input, typename Output>
-void run_on_hip(const Kernel& ker, int n, const Input& in, Output& out)
-{
-  typename Input::Scalar*  d_in;
-  typename Output::Scalar* d_out;
-  std::ptrdiff_t in_bytes  = in.size()  * sizeof(typename Input::Scalar);
-  std::ptrdiff_t out_bytes = out.size() * sizeof(typename Output::Scalar);
-  
-  hipMalloc((void**)(&d_in),  in_bytes);
-  hipMalloc((void**)(&d_out), out_bytes);
-  
-  hipMemcpy(d_in,  in.data(),  in_bytes,  hipMemcpyHostToDevice);
-  hipMemcpy(d_out, out.data(), out_bytes, hipMemcpyHostToDevice);
-  
-  // Simple and non-optimal 1D mapping assuming n is not too large
-  // That's only for unit testing!
-  dim3 Blocks(128);
-  dim3 Grids( (n+int(Blocks.x)-1)/int(Blocks.x) );
-
-  hipDeviceSynchronize();
-  hipLaunchKernelGGL(HIP_KERNEL_NAME(run_on_hip_meta_kernel<Kernel,
-                                                         typename std::decay<decltype(*d_in)>::type,
-                                                         typename std::decay<decltype(*d_out)>::type>), 
-                  dim3(Grids), dim3(Blocks), 0, 0, ker, n, d_in, d_out);
-  hipDeviceSynchronize();
-  
-  // check inputs have not been modified
-  hipMemcpy(const_cast<typename Input::Scalar*>(in.data()),  d_in,  in_bytes,  hipMemcpyDeviceToHost);
-  hipMemcpy(out.data(), d_out, out_bytes, hipMemcpyDeviceToHost);
-  
-  hipFree(d_in);
-  hipFree(d_out);
-}
-
-
-template<typename Kernel, typename Input, typename Output>
-void run_and_compare_to_hip(const Kernel& ker, int n, const Input& in, Output& out)
-{
-  Input  in_ref,  in_hip;
-  Output out_ref, out_hip;
-  #ifndef __HIP_DEVICE_COMPILE__
-  in_ref = in_hip = in;
-  out_ref = out_hip = out;
-  #endif
-  run_on_cpu (ker, n, in_ref,  out_ref);
-  run_on_hip(ker, n, in_hip, out_hip);
-  #ifndef __HIP_DEVICE_COMPILE__
-  VERIFY_IS_APPROX(in_ref, in_hip);
-  VERIFY_IS_APPROX(out_ref, out_hip);
-  #endif
-}
-
-
-void ei_test_init_hip()
-{
-  int device = 0;
-  hipDeviceProp_t deviceProp;
-  hipGetDeviceProperties(&deviceProp, device);
-  std::cout << "HIP device info:\n";
-  std::cout << "  name:                        " << deviceProp.name << "\n";
-  std::cout << "  capability:                  " << deviceProp.major << "." << deviceProp.minor << "\n";
-  std::cout << "  multiProcessorCount:         " << deviceProp.multiProcessorCount << "\n";
-  std::cout << "  maxThreadsPerMultiProcessor: " << deviceProp.maxThreadsPerMultiProcessor << "\n";
-  std::cout << "  warpSize:                    " << deviceProp.warpSize << "\n";
-  std::cout << "  regsPerBlock:                " << deviceProp.regsPerBlock << "\n";
-  std::cout << "  concurrentKernels:           " << deviceProp.concurrentKernels << "\n";
-  std::cout << "  clockRate:                   " << deviceProp.clockRate << "\n";
-  std::cout << "  canMapHostMemory:            " << deviceProp.canMapHostMemory << "\n";
-  std::cout << "  computeMode:                 " << deviceProp.computeMode << "\n";
-}
-
-#endif // EIGEN_TEST_HIP_COMMON_H