blob: d59071f06d475dcb12a85a791e811256668439dc [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
// Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
// Copyright (C) 2013 Pavel Holoborodko <pavel@holoborodko.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*****************************************************************************
*** Platform checks for aligned malloc functions ***
*****************************************************************************/
#ifndef EIGEN_MEMORY_H
#define EIGEN_MEMORY_H
#ifndef EIGEN_MALLOC_ALREADY_ALIGNED
// Try to determine automatically if malloc is already aligned.
// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
// http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
// This is true at least since glibc 2.8.
// This leaves the question how to detect 64-bit. According to this document,
// http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
// quite safe, at least within the context of glibc, to equate 64-bit with LP64.
#if defined(__GLIBC__) && ((__GLIBC__ >= 2 && __GLIBC_MINOR__ >= 8) || __GLIBC__ > 2) && defined(__LP64__) && \
!defined(__SANITIZE_ADDRESS__) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
#define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
#else
#define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
#endif
// FreeBSD 6 seems to have 16-byte aligned malloc
// See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
// See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
#if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
#define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
#else
#define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
#endif
#if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) || \
EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
#define EIGEN_MALLOC_ALREADY_ALIGNED 1
#else
#define EIGEN_MALLOC_ALREADY_ALIGNED 0
#endif
#endif
#ifndef EIGEN_MALLOC_CHECK_THREAD_LOCAL
// Check whether we can use the thread_local keyword to allow or disallow
// allocating memory with per-thread granularity, by means of the
// set_is_malloc_allowed() function.
#ifndef EIGEN_AVOID_THREAD_LOCAL
#if ((EIGEN_COMP_GNUC) || __has_feature(cxx_thread_local) || EIGEN_COMP_MSVC >= 1900) && \
!defined(EIGEN_GPU_COMPILE_PHASE)
#define EIGEN_MALLOC_CHECK_THREAD_LOCAL thread_local
#else
#define EIGEN_MALLOC_CHECK_THREAD_LOCAL
#endif
#else // EIGEN_AVOID_THREAD_LOCAL
#define EIGEN_MALLOC_CHECK_THREAD_LOCAL
#endif // EIGEN_AVOID_THREAD_LOCAL
#endif
// IWYU pragma: private
#include "../InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
/*****************************************************************************
*** Implementation of portable aligned versions of malloc/free/realloc ***
*****************************************************************************/
#ifdef EIGEN_NO_MALLOC
EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() {
eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
}
#elif defined EIGEN_RUNTIME_NO_MALLOC
EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false) {
EIGEN_MALLOC_CHECK_THREAD_LOCAL static bool value = true;
if (update == 1) value = new_value;
return value;
}
EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() {
eigen_assert(is_malloc_allowed() &&
"heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
}
#else
EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() {}
#endif
EIGEN_DEVICE_FUNC inline void throw_std_bad_alloc() {
#ifdef EIGEN_EXCEPTIONS
throw std::bad_alloc();
#else
std::size_t huge = static_cast<std::size_t>(-1);
#if defined(EIGEN_HIPCC)
//
// calls to "::operator new" are to be treated as opaque function calls (i.e no inlining),
// and as a consequence the code in the #else block triggers the hipcc warning :
// "no overloaded function has restriction specifiers that are compatible with the ambient context"
//
// "throw_std_bad_alloc" has the EIGEN_DEVICE_FUNC attribute, so it seems that hipcc expects
// the same on "operator new"
// Reverting code back to the old version in this #if block for the hipcc compiler
//
new int[huge];
#else
void* unused = ::operator new(huge);
EIGEN_UNUSED_VARIABLE(unused);
#endif
#endif
}
/*****************************************************************************
*** Implementation of handmade aligned functions ***
*****************************************************************************/
/* ----- Hand made implementations of aligned malloc/free and realloc ----- */
/** \internal Like malloc, but the returned pointer is guaranteed to be aligned to `alignment`.
* Fast, but wastes `alignment` additional bytes of memory. Does not throw any exception.
*/
EIGEN_DEVICE_FUNC inline void* handmade_aligned_malloc(std::size_t size,
std::size_t alignment = EIGEN_DEFAULT_ALIGN_BYTES) {
eigen_assert(alignment >= sizeof(void*) && alignment <= 128 && (alignment & (alignment - 1)) == 0 &&
"Alignment must be at least sizeof(void*), less than or equal to 128, and a power of 2");
check_that_malloc_is_allowed();
EIGEN_USING_STD(malloc)
void* original = malloc(size + alignment);
if (original == 0) return 0;
uint8_t offset = static_cast<uint8_t>(alignment - (reinterpret_cast<std::size_t>(original) & (alignment - 1)));
void* aligned = static_cast<void*>(static_cast<uint8_t*>(original) + offset);
*(static_cast<uint8_t*>(aligned) - 1) = offset;
return aligned;
}
/** \internal Frees memory allocated with handmade_aligned_malloc */
EIGEN_DEVICE_FUNC inline void handmade_aligned_free(void* ptr) {
if (ptr != nullptr) {
uint8_t offset = static_cast<uint8_t>(*(static_cast<uint8_t*>(ptr) - 1));
void* original = static_cast<void*>(static_cast<uint8_t*>(ptr) - offset);
check_that_malloc_is_allowed();
EIGEN_USING_STD(free)
free(original);
}
}
/** \internal
* \brief Reallocates aligned memory.
* Since we know that our handmade version is based on std::malloc
* we can use std::realloc to implement efficient reallocation.
*/
EIGEN_DEVICE_FUNC inline void* handmade_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size,
std::size_t alignment = EIGEN_DEFAULT_ALIGN_BYTES) {
if (ptr == nullptr) return handmade_aligned_malloc(new_size, alignment);
uint8_t old_offset = *(static_cast<uint8_t*>(ptr) - 1);
void* old_original = static_cast<uint8_t*>(ptr) - old_offset;
check_that_malloc_is_allowed();
EIGEN_USING_STD(realloc)
void* original = realloc(old_original, new_size + alignment);
if (original == nullptr) return nullptr;
if (original == old_original) return ptr;
uint8_t offset = static_cast<uint8_t>(alignment - (reinterpret_cast<std::size_t>(original) & (alignment - 1)));
void* aligned = static_cast<void*>(static_cast<uint8_t*>(original) + offset);
if (offset != old_offset) {
const void* src = static_cast<const void*>(static_cast<uint8_t*>(original) + old_offset);
std::size_t count = (std::min)(new_size, old_size);
std::memmove(aligned, src, count);
}
*(static_cast<uint8_t*>(aligned) - 1) = offset;
return aligned;
}
/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on
* the requirements. On allocation error, the returned pointer is null, and std::bad_alloc is thrown.
*/
EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size) {
if (size == 0) return nullptr;
void* result;
#if (EIGEN_DEFAULT_ALIGN_BYTES == 0) || EIGEN_MALLOC_ALREADY_ALIGNED
check_that_malloc_is_allowed();
EIGEN_USING_STD(malloc)
result = malloc(size);
#if EIGEN_DEFAULT_ALIGN_BYTES == 16
eigen_assert((size < 16 || (std::size_t(result) % 16) == 0) &&
"System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback "
"to handmade aligned memory allocator.");
#endif
#else
result = handmade_aligned_malloc(size);
#endif
if (!result && size) throw_std_bad_alloc();
return result;
}
/** \internal Frees memory allocated with aligned_malloc. */
EIGEN_DEVICE_FUNC inline void aligned_free(void* ptr) {
#if (EIGEN_DEFAULT_ALIGN_BYTES == 0) || EIGEN_MALLOC_ALREADY_ALIGNED
if (ptr != nullptr) {
check_that_malloc_is_allowed();
EIGEN_USING_STD(free)
free(ptr);
}
#else
handmade_aligned_free(ptr);
#endif
}
/**
* \internal
* \brief Reallocates an aligned block of memory.
* \throws std::bad_alloc on allocation failure
*/
EIGEN_DEVICE_FUNC inline void* aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) {
if (ptr == nullptr) return aligned_malloc(new_size);
if (old_size == new_size) return ptr;
if (new_size == 0) {
aligned_free(ptr);
return nullptr;
}
void* result;
#if (EIGEN_DEFAULT_ALIGN_BYTES == 0) || EIGEN_MALLOC_ALREADY_ALIGNED
EIGEN_UNUSED_VARIABLE(old_size)
check_that_malloc_is_allowed();
EIGEN_USING_STD(realloc)
result = realloc(ptr, new_size);
#else
result = handmade_aligned_realloc(ptr, new_size, old_size);
#endif
if (!result && new_size) throw_std_bad_alloc();
return result;
}
/*****************************************************************************
*** Implementation of conditionally aligned functions ***
*****************************************************************************/
/** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
* On allocation error, the returned pointer is null, and a std::bad_alloc is thrown.
*/
template <bool Align>
EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size) {
return aligned_malloc(size);
}
template <>
EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc<false>(std::size_t size) {
if (size == 0) return nullptr;
check_that_malloc_is_allowed();
EIGEN_USING_STD(malloc)
void* result = malloc(size);
if (!result && size) throw_std_bad_alloc();
return result;
}
/** \internal Frees memory allocated with conditional_aligned_malloc */
template <bool Align>
EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void* ptr) {
aligned_free(ptr);
}
template <>
EIGEN_DEVICE_FUNC inline void conditional_aligned_free<false>(void* ptr) {
if (ptr != nullptr) {
check_that_malloc_is_allowed();
EIGEN_USING_STD(free)
free(ptr);
}
}
template <bool Align>
EIGEN_DEVICE_FUNC inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) {
return aligned_realloc(ptr, new_size, old_size);
}
template <>
EIGEN_DEVICE_FUNC inline void* conditional_aligned_realloc<false>(void* ptr, std::size_t new_size,
std::size_t old_size) {
if (ptr == nullptr) return conditional_aligned_malloc<false>(new_size);
if (old_size == new_size) return ptr;
if (new_size == 0) {
conditional_aligned_free<false>(ptr);
return nullptr;
}
check_that_malloc_is_allowed();
EIGEN_USING_STD(realloc)
return realloc(ptr, new_size);
}
/*****************************************************************************
*** Construction/destruction of array elements ***
*****************************************************************************/
/** \internal Destructs the elements of an array.
* The \a size parameters tells on how many objects to call the destructor of T.
*/
template <typename T>
EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T* ptr, std::size_t size) {
// always destruct an array starting from the end.
if (ptr)
while (size) ptr[--size].~T();
}
/** \internal Constructs the elements of an array.
* The \a size parameter tells on how many objects to call the constructor of T.
*/
template <typename T>
EIGEN_DEVICE_FUNC inline T* default_construct_elements_of_array(T* ptr, std::size_t size) {
std::size_t i = 0;
EIGEN_TRY {
for (i = 0; i < size; ++i) ::new (ptr + i) T;
}
EIGEN_CATCH(...) {
destruct_elements_of_array(ptr, i);
EIGEN_THROW;
}
return ptr;
}
/** \internal Copy-constructs the elements of an array.
* The \a size parameter tells on how many objects to copy.
*/
template <typename T>
EIGEN_DEVICE_FUNC inline T* copy_construct_elements_of_array(T* ptr, const T* src, std::size_t size) {
std::size_t i = 0;
EIGEN_TRY {
for (i = 0; i < size; ++i) ::new (ptr + i) T(*(src + i));
}
EIGEN_CATCH(...) {
destruct_elements_of_array(ptr, i);
EIGEN_THROW;
}
return ptr;
}
/** \internal Move-constructs the elements of an array.
* The \a size parameter tells on how many objects to move.
*/
template <typename T>
EIGEN_DEVICE_FUNC inline T* move_construct_elements_of_array(T* ptr, T* src, std::size_t size) {
std::size_t i = 0;
EIGEN_TRY {
for (i = 0; i < size; ++i) ::new (ptr + i) T(std::move(*(src + i)));
}
EIGEN_CATCH(...) {
destruct_elements_of_array(ptr, i);
EIGEN_THROW;
}
return ptr;
}
/*****************************************************************************
*** Implementation of aligned new/delete-like functions ***
*****************************************************************************/
template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size) {
if (size > std::size_t(-1) / sizeof(T)) throw_std_bad_alloc();
}
/** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
* On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown.
* The default constructor of T is called.
*/
template <typename T>
EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size) {
check_size_for_overflow<T>(size);
T* result = static_cast<T*>(aligned_malloc(sizeof(T) * size));
EIGEN_TRY { return default_construct_elements_of_array(result, size); }
EIGEN_CATCH(...) {
aligned_free(result);
EIGEN_THROW;
}
return result;
}
template <typename T, bool Align>
EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size) {
check_size_for_overflow<T>(size);
T* result = static_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T) * size));
EIGEN_TRY { return default_construct_elements_of_array(result, size); }
EIGEN_CATCH(...) {
conditional_aligned_free<Align>(result);
EIGEN_THROW;
}
return result;
}
/** \internal Deletes objects constructed with aligned_new
* The \a size parameters tells on how many objects to call the destructor of T.
*/
template <typename T>
EIGEN_DEVICE_FUNC inline void aligned_delete(T* ptr, std::size_t size) {
destruct_elements_of_array<T>(ptr, size);
aligned_free(ptr);
}
/** \internal Deletes objects constructed with conditional_aligned_new
* The \a size parameters tells on how many objects to call the destructor of T.
*/
template <typename T, bool Align>
EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T* ptr, std::size_t size) {
destruct_elements_of_array<T>(ptr, size);
conditional_aligned_free<Align>(ptr);
}
template <typename T, bool Align>
EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size) {
check_size_for_overflow<T>(new_size);
check_size_for_overflow<T>(old_size);
// If elements need to be explicitly initialized, we cannot simply realloc
// (or memcpy) the memory block - each element needs to be reconstructed.
// Otherwise, objects that contain internal pointers like mpfr or
// AnnoyingScalar can be pointing to the wrong thing.
T* result = static_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T) * new_size));
EIGEN_TRY {
// Move-construct initial elements.
std::size_t copy_size = (std::min)(old_size, new_size);
move_construct_elements_of_array(result, pts, copy_size);
// Default-construct remaining elements.
if (new_size > old_size) {
default_construct_elements_of_array(result + copy_size, new_size - old_size);
}
// Delete old elements.
conditional_aligned_delete<T, Align>(pts, old_size);
}
EIGEN_CATCH(...) {
conditional_aligned_free<Align>(result);
EIGEN_THROW;
}
return result;
}
template <typename T, bool Align>
EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size) {
if (size == 0) return 0; // short-cut. Also fixes Bug 884
check_size_for_overflow<T>(size);
T* result = static_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T) * size));
if (NumTraits<T>::RequireInitialization) {
EIGEN_TRY { default_construct_elements_of_array(result, size); }
EIGEN_CATCH(...) {
conditional_aligned_free<Align>(result);
EIGEN_THROW;
}
}
return result;
}
template <typename T, bool Align>
EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size) {
if (NumTraits<T>::RequireInitialization) {
return conditional_aligned_realloc_new<T, Align>(pts, new_size, old_size);
}
check_size_for_overflow<T>(new_size);
check_size_for_overflow<T>(old_size);
return static_cast<T*>(
conditional_aligned_realloc<Align>(static_cast<void*>(pts), sizeof(T) * new_size, sizeof(T) * old_size));
}
template <typename T, bool Align>
EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T* ptr, std::size_t size) {
if (NumTraits<T>::RequireInitialization) destruct_elements_of_array<T>(ptr, size);
conditional_aligned_free<Align>(ptr);
}
/****************************************************************************/
/** \internal Returns the index of the first element of the array that is well aligned with respect to the requested \a
* Alignment.
*
* \tparam Alignment requested alignment in Bytes.
* \param array the address of the start of the array
* \param size the size of the array
*
* \note If no element of the array is well aligned or the requested alignment is not a multiple of a scalar,
* the size of the array is returned. For example with SSE, the requested alignment is typically 16-bytes. If
* packet size for the given scalar type is 1, then everything is considered well-aligned.
*
* \note Otherwise, if the Alignment is larger that the scalar size, we rely on the assumptions that sizeof(Scalar) is a
* power of 2. On the other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails
* for example with Scalar=double on certain 32-bit platforms, see bug #79.
*
* There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
* \sa first_default_aligned()
*/
template <int Alignment, typename Scalar, typename Index>
EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size) {
const Index ScalarSize = sizeof(Scalar);
const Index AlignmentSize = Alignment / ScalarSize;
const Index AlignmentMask = AlignmentSize - 1;
if (AlignmentSize <= 1) {
// Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar
// so that all elements of the array have the same alignment.
return 0;
} else if ((std::uintptr_t(array) & (sizeof(Scalar) - 1)) || (Alignment % ScalarSize) != 0) {
// The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the
// scalar size. Consequently, no element of the array is well aligned.
return size;
} else {
Index first = (AlignmentSize - (Index((std::uintptr_t(array) / sizeof(Scalar))) & AlignmentMask)) & AlignmentMask;
return (first < size) ? first : size;
}
}
/** \internal Returns the index of the first element of the array that is well aligned with respect the largest packet
* requirement. \sa first_aligned(Scalar*,Index) and first_default_aligned(DenseBase<Derived>) */
template <typename Scalar, typename Index>
EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size) {
typedef typename packet_traits<Scalar>::type DefaultPacketType;
return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(array, size);
}
/** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size
*/
template <typename Index>
inline Index first_multiple(Index size, Index base) {
return ((size + base - 1) / base) * base;
}
// std::copy is much slower than memcpy, so let's introduce a smart_copy which
// use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
template <typename T, bool UseMemcpy>
struct smart_copy_helper;
template <typename T>
EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target) {
smart_copy_helper<T, !NumTraits<T>::RequireInitialization>::run(start, end, target);
}
template <typename T>
struct smart_copy_helper<T, true> {
EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) {
std::intptr_t size = std::intptr_t(end) - std::intptr_t(start);
if (size == 0) return;
eigen_internal_assert(start != 0 && end != 0 && target != 0);
EIGEN_USING_STD(memcpy)
memcpy(target, start, size);
}
};
template <typename T>
struct smart_copy_helper<T, false> {
EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) { std::copy(start, end, target); }
};
// intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise.
template <typename T, bool UseMemmove>
struct smart_memmove_helper;
template <typename T>
void smart_memmove(const T* start, const T* end, T* target) {
smart_memmove_helper<T, !NumTraits<T>::RequireInitialization>::run(start, end, target);
}
template <typename T>
struct smart_memmove_helper<T, true> {
static inline void run(const T* start, const T* end, T* target) {
std::intptr_t size = std::intptr_t(end) - std::intptr_t(start);
if (size == 0) return;
eigen_internal_assert(start != 0 && end != 0 && target != 0);
std::memmove(target, start, size);
}
};
template <typename T>
struct smart_memmove_helper<T, false> {
static inline void run(const T* start, const T* end, T* target) {
if (std::uintptr_t(target) < std::uintptr_t(start)) {
std::copy(start, end, target);
} else {
std::ptrdiff_t count = (std::ptrdiff_t(end) - std::ptrdiff_t(start)) / sizeof(T);
std::copy_backward(start, end, target + count);
}
}
};
template <typename T>
EIGEN_DEVICE_FUNC T* smart_move(T* start, T* end, T* target) {
return std::move(start, end, target);
}
/*****************************************************************************
*** Implementation of runtime stack allocation (falling back to malloc) ***
*****************************************************************************/
// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
// to the appropriate stack allocation function
#if !defined EIGEN_ALLOCA && !defined EIGEN_GPU_COMPILE_PHASE
#if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca)
#define EIGEN_ALLOCA alloca
#elif EIGEN_COMP_MSVC
#define EIGEN_ALLOCA _alloca
#endif
#endif
// With clang -Oz -mthumb, alloca changes the stack pointer in a way that is
// not allowed in Thumb2. -DEIGEN_STACK_ALLOCATION_LIMIT=0 doesn't work because
// the compiler still emits bad code because stack allocation checks use "<=".
// TODO: Eliminate after https://bugs.llvm.org/show_bug.cgi?id=23772
// is fixed.
#if defined(__clang__) && defined(__thumb__)
#undef EIGEN_ALLOCA
#endif
// This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
// at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
template <typename T>
class aligned_stack_memory_handler : noncopyable {
public:
/* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
* Note that \a ptr can be 0 regardless of the other parameters.
* This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type
*T (see NumTraits<T>::RequireInitialization). In this case, the buffer elements will also be destructed when this
*handler will be destructed. Finally, if \a dealloc is true, then the pointer \a ptr is freed.
**/
EIGEN_DEVICE_FUNC aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc)
: m_ptr(ptr), m_size(size), m_deallocate(dealloc) {
if (NumTraits<T>::RequireInitialization && m_ptr) Eigen::internal::default_construct_elements_of_array(m_ptr, size);
}
EIGEN_DEVICE_FUNC ~aligned_stack_memory_handler() {
if (NumTraits<T>::RequireInitialization && m_ptr) Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
if (m_deallocate) Eigen::internal::aligned_free(m_ptr);
}
protected:
T* m_ptr;
std::size_t m_size;
bool m_deallocate;
};
#ifdef EIGEN_ALLOCA
template <typename Xpr, int NbEvaluations,
bool MapExternalBuffer = nested_eval<Xpr, NbEvaluations>::Evaluate && Xpr::MaxSizeAtCompileTime == Dynamic>
struct local_nested_eval_wrapper {
static constexpr bool NeedExternalBuffer = false;
typedef typename Xpr::Scalar Scalar;
typedef typename nested_eval<Xpr, NbEvaluations>::type ObjectType;
ObjectType object;
EIGEN_DEVICE_FUNC local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr) : object(xpr) {
EIGEN_UNUSED_VARIABLE(ptr);
eigen_internal_assert(ptr == 0);
}
};
template <typename Xpr, int NbEvaluations>
struct local_nested_eval_wrapper<Xpr, NbEvaluations, true> {
static constexpr bool NeedExternalBuffer = true;
typedef typename Xpr::Scalar Scalar;
typedef typename plain_object_eval<Xpr>::type PlainObject;
typedef Map<PlainObject, EIGEN_DEFAULT_ALIGN_BYTES> ObjectType;
ObjectType object;
EIGEN_DEVICE_FUNC local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr)
: object(ptr == 0 ? reinterpret_cast<Scalar*>(Eigen::internal::aligned_malloc(sizeof(Scalar) * xpr.size())) : ptr,
xpr.rows(), xpr.cols()),
m_deallocate(ptr == 0) {
if (NumTraits<Scalar>::RequireInitialization && object.data())
Eigen::internal::default_construct_elements_of_array(object.data(), object.size());
object = xpr;
}
EIGEN_DEVICE_FUNC ~local_nested_eval_wrapper() {
if (NumTraits<Scalar>::RequireInitialization && object.data())
Eigen::internal::destruct_elements_of_array(object.data(), object.size());
if (m_deallocate) Eigen::internal::aligned_free(object.data());
}
private:
bool m_deallocate;
};
#endif // EIGEN_ALLOCA
template <typename T>
class scoped_array : noncopyable {
T* m_ptr;
public:
explicit scoped_array(std::ptrdiff_t size) { m_ptr = new T[size]; }
~scoped_array() { delete[] m_ptr; }
T& operator[](std::ptrdiff_t i) { return m_ptr[i]; }
const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; }
T*& ptr() { return m_ptr; }
const T* ptr() const { return m_ptr; }
operator const T*() const { return m_ptr; }
};
template <typename T>
void swap(scoped_array<T>& a, scoped_array<T>& b) {
std::swap(a.ptr(), b.ptr());
}
} // end namespace internal
/** \internal
*
* The macro ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) declares, allocates,
* and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack
* if the size in bytes is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the
* platform (currently, this is Linux, OSX and Visual Studio only). Otherwise the memory is allocated on the heap. The
* allocated buffer is automatically deleted when exiting the scope of this declaration. If BUFFER is non null, then the
* declared variable is simply an alias for BUFFER, and no allocation/deletion occurs. Here is an example: \code
* {
* ei_declare_aligned_stack_constructed_variable(float,data,size,0);
* // use data[0] to data[size-1]
* }
* \endcode
* The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
*
* The macro ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) is analogue to
* \code
* typename internal::nested_eval<XPRT_T,N>::type NAME(XPR);
* \endcode
* with the advantage of using aligned stack allocation even if the maximal size of XPR at compile time is unknown.
* This is accomplished through alloca if this later is supported and if the required number of bytes
* is below EIGEN_STACK_ALLOCATION_LIMIT.
*/
#ifdef EIGEN_ALLOCA
#if EIGEN_DEFAULT_ALIGN_BYTES > 0
// We always manually re-align the result of EIGEN_ALLOCA.
// If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment.
#if ((EIGEN_COMP_GNUC || EIGEN_COMP_CLANG) && !EIGEN_COMP_NVHPC)
#define EIGEN_ALIGNED_ALLOCA(SIZE) __builtin_alloca_with_align(SIZE, CHAR_BIT* EIGEN_DEFAULT_ALIGN_BYTES)
#else
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* eigen_aligned_alloca_helper(void* ptr) {
constexpr std::uintptr_t mask = EIGEN_DEFAULT_ALIGN_BYTES - 1;
std::uintptr_t ptr_int = std::uintptr_t(ptr);
std::uintptr_t aligned_ptr_int = (ptr_int + mask) & ~mask;
std::uintptr_t offset = aligned_ptr_int - ptr_int;
return static_cast<void*>(static_cast<uint8_t*>(ptr) + offset);
}
#define EIGEN_ALIGNED_ALLOCA(SIZE) eigen_aligned_alloca_helper(EIGEN_ALLOCA(SIZE + EIGEN_DEFAULT_ALIGN_BYTES - 1))
#endif
#else
#define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE)
#endif
#define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER) \
Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
TYPE* NAME = (BUFFER) != 0 ? (BUFFER) \
: reinterpret_cast<TYPE*>((sizeof(TYPE) * SIZE <= EIGEN_STACK_ALLOCATION_LIMIT) \
? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE) * SIZE) \
: Eigen::internal::aligned_malloc(sizeof(TYPE) * SIZE)); \
Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME, _stack_memory_destructor)( \
(BUFFER) == 0 ? NAME : 0, SIZE, sizeof(TYPE) * SIZE > EIGEN_STACK_ALLOCATION_LIMIT)
#define ei_declare_local_nested_eval(XPR_T, XPR, N, NAME) \
Eigen::internal::local_nested_eval_wrapper<XPR_T, N> EIGEN_CAT(NAME, _wrapper)( \
XPR, reinterpret_cast<typename XPR_T::Scalar*>( \
((Eigen::internal::local_nested_eval_wrapper<XPR_T, N>::NeedExternalBuffer) && \
((sizeof(typename XPR_T::Scalar) * XPR.size()) <= EIGEN_STACK_ALLOCATION_LIMIT)) \
? EIGEN_ALIGNED_ALLOCA(sizeof(typename XPR_T::Scalar) * XPR.size()) \
: 0)); \
typename Eigen::internal::local_nested_eval_wrapper<XPR_T, N>::ObjectType NAME(EIGEN_CAT(NAME, _wrapper).object)
#else
#define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER) \
Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
TYPE* NAME = (BUFFER) != 0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE) * SIZE)); \
Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME, _stack_memory_destructor)( \
(BUFFER) == 0 ? NAME : 0, SIZE, true)
#define ei_declare_local_nested_eval(XPR_T, XPR, N, NAME) \
typename Eigen::internal::nested_eval<XPR_T, N>::type NAME(XPR)
#endif
/*****************************************************************************
*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
*****************************************************************************/
#if EIGEN_HAS_CXX17_OVERALIGN
// C++17 -> no need to bother about alignment anymore :)
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign)
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Size)
#else
// HIP does not support new/delete on device.
#if EIGEN_MAX_ALIGN_BYTES != 0 && !defined(EIGEN_HIP_DEVICE_COMPILE)
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
EIGEN_DEVICE_FUNC void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \
EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
EIGEN_CATCH(...) { return 0; } \
}
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
EIGEN_DEVICE_FUNC void* operator new(std::size_t size) { \
return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
} \
EIGEN_DEVICE_FUNC void* operator new[](std::size_t size) { \
return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
} \
EIGEN_DEVICE_FUNC void operator delete(void* ptr) EIGEN_NO_THROW { \
Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
} \
EIGEN_DEVICE_FUNC void operator delete[](void* ptr) EIGEN_NO_THROW { \
Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
} \
EIGEN_DEVICE_FUNC void operator delete(void* ptr, std::size_t /* sz */) EIGEN_NO_THROW { \
Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
} \
EIGEN_DEVICE_FUNC void operator delete[](void* ptr, std::size_t /* sz */) EIGEN_NO_THROW { \
Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
} \
/* in-place new and delete. since (at least afaik) there is no actual */ \
/* memory allocated we can safely let the default implementation handle */ \
/* this particular case. */ \
EIGEN_DEVICE_FUNC static void* operator new(std::size_t size, void* ptr) { return ::operator new(size, ptr); } \
EIGEN_DEVICE_FUNC static void* operator new[](std::size_t size, void* ptr) { return ::operator new[](size, ptr); } \
EIGEN_DEVICE_FUNC void operator delete(void* memory, void* ptr) EIGEN_NO_THROW { \
return ::operator delete(memory, ptr); \
} \
EIGEN_DEVICE_FUNC void operator delete[](void* memory, void* ptr) EIGEN_NO_THROW { \
return ::operator delete[](memory, ptr); \
} \
/* nothrow-new (returns zero instead of std::bad_alloc) */ \
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
EIGEN_DEVICE_FUNC void operator delete(void* ptr, const std::nothrow_t&) EIGEN_NO_THROW { \
Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
} \
typedef void eigen_aligned_operator_new_marker_type;
#else
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
#endif
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Size) \
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF( \
bool(((Size) != Eigen::Dynamic) && \
(((EIGEN_MAX_ALIGN_BYTES >= 16) && ((sizeof(Scalar) * (Size)) % (EIGEN_MAX_ALIGN_BYTES) == 0)) || \
((EIGEN_MAX_ALIGN_BYTES >= 32) && ((sizeof(Scalar) * (Size)) % (EIGEN_MAX_ALIGN_BYTES / 2) == 0)) || \
((EIGEN_MAX_ALIGN_BYTES >= 64) && ((sizeof(Scalar) * (Size)) % (EIGEN_MAX_ALIGN_BYTES / 4) == 0)))))
#endif
/****************************************************************************/
/** \class aligned_allocator
* \ingroup Core_Module
*
* \brief STL compatible allocator to use with types requiring a non-standard alignment.
*
* The memory is aligned as for dynamically aligned matrix/array types such as MatrixXd.
* By default, it will thus provide at least 16 bytes alignment and more in following cases:
* - 32 bytes alignment if AVX is enabled.
* - 64 bytes alignment if AVX512 is enabled.
*
* This can be controlled using the \c EIGEN_MAX_ALIGN_BYTES macro as documented
* \link TopicPreprocessorDirectivesPerformance there \endlink.
*
* Example:
* \code
* // Matrix4f requires 16 bytes alignment:
* std::map< int, Matrix4f, std::less<int>,
* aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
* std::map< int, Vector3f > my_map_vec3;
* \endcode
*
* \sa \blank \ref TopicStlContainers.
*/
template <class T>
class aligned_allocator : public std::allocator<T> {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template <class U>
struct rebind {
typedef aligned_allocator<U> other;
};
aligned_allocator() : std::allocator<T>() {}
aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {}
template <class U>
aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {}
~aligned_allocator() {}
#if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_STRICT_AT_LEAST(7, 0, 0)
// In gcc std::allocator::max_size() is bugged making gcc triggers a warning:
// eigen/Eigen/src/Core/util/Memory.h:189:12: warning: argument 1 value '18446744073709551612' exceeds maximum object
// size 9223372036854775807 See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87544
size_type max_size() const { return (std::numeric_limits<std::ptrdiff_t>::max)() / sizeof(T); }
#endif
pointer allocate(size_type num, const void* /*hint*/ = 0) {
internal::check_size_for_overflow<T>(num);
return static_cast<pointer>(internal::aligned_malloc(num * sizeof(T)));
}
void deallocate(pointer p, size_type /*num*/) { internal::aligned_free(p); }
};
//---------- Cache sizes ----------
#if !defined(EIGEN_NO_CPUID)
#if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64
#if defined(__PIC__) && EIGEN_ARCH_i386
// Case for x86 with PIC
#define EIGEN_CPUID(abcd, func, id) \
__asm__ __volatile__("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1" \
: "=a"(abcd[0]), "=&r"(abcd[1]), "=c"(abcd[2]), "=d"(abcd[3]) \
: "a"(func), "c"(id));
#elif defined(__PIC__) && EIGEN_ARCH_x86_64
// Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with
// the default small code model. However, we cannot detect which code model is used, and the xchg overhead is negligible
// anyway.
#define EIGEN_CPUID(abcd, func, id) \
__asm__ __volatile__("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1" \
: "=a"(abcd[0]), "=&r"(abcd[1]), "=c"(abcd[2]), "=d"(abcd[3]) \
: "0"(func), "2"(id));
#else
// Case for x86_64 or x86 w/o PIC
#define EIGEN_CPUID(abcd, func, id) \
__asm__ __volatile__("cpuid" : "=a"(abcd[0]), "=b"(abcd[1]), "=c"(abcd[2]), "=d"(abcd[3]) : "0"(func), "2"(id));
#endif
#elif EIGEN_COMP_MSVC
#if EIGEN_ARCH_i386_OR_x86_64
#define EIGEN_CPUID(abcd, func, id) __cpuidex((int*)abcd, func, id)
#endif
#endif
#endif
namespace internal {
#ifdef EIGEN_CPUID
inline bool cpuid_is_vendor(int abcd[4], const int vendor[3]) {
return abcd[1] == vendor[0] && abcd[3] == vendor[1] && abcd[2] == vendor[2];
}
inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3) {
int abcd[4];
l1 = l2 = l3 = 0;
int cache_id = 0;
int cache_type = 0;
do {
abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
EIGEN_CPUID(abcd, 0x4, cache_id);
cache_type = (abcd[0] & 0x0F) >> 0;
if (cache_type == 1 || cache_type == 3) // data or unified cache
{
int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
int sets = (abcd[2]); // C[31:0]
int cache_size = (ways + 1) * (partitions + 1) * (line_size + 1) * (sets + 1);
switch (cache_level) {
case 1:
l1 = cache_size;
break;
case 2:
l2 = cache_size;
break;
case 3:
l3 = cache_size;
break;
default:
break;
}
}
cache_id++;
} while (cache_type > 0 && cache_id < 16);
}
inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3) {
int abcd[4];
abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
l1 = l2 = l3 = 0;
EIGEN_CPUID(abcd, 0x00000002, 0);
unsigned char* bytes = reinterpret_cast<unsigned char*>(abcd) + 2;
bool check_for_p2_core2 = false;
for (int i = 0; i < 14; ++i) {
switch (bytes[i]) {
case 0x0A:
l1 = 8;
break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
case 0x0C:
l1 = 16;
break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
case 0x0E:
l1 = 24;
break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
case 0x10:
l1 = 16;
break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
case 0x15:
l1 = 16;
break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
case 0x2C:
l1 = 32;
break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
case 0x30:
l1 = 32;
break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
case 0x60:
l1 = 16;
break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
case 0x66:
l1 = 8;
break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
case 0x67:
l1 = 16;
break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
case 0x68:
l1 = 32;
break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
case 0x1A:
l2 = 96;
break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
case 0x22:
l3 = 512;
break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
case 0x23:
l3 = 1024;
break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
case 0x25:
l3 = 2048;
break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
case 0x29:
l3 = 4096;
break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
case 0x39:
l2 = 128;
break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
case 0x3A:
l2 = 192;
break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
case 0x3B:
l2 = 128;
break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
case 0x3C:
l2 = 256;
break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
case 0x3D:
l2 = 384;
break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
case 0x3E:
l2 = 512;
break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
case 0x40:
l2 = 0;
break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
case 0x41:
l2 = 128;
break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
case 0x42:
l2 = 256;
break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
case 0x43:
l2 = 512;
break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
case 0x44:
l2 = 1024;
break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
case 0x45:
l2 = 2048;
break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
case 0x46:
l3 = 4096;
break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
case 0x47:
l3 = 8192;
break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
case 0x48:
l2 = 3072;
break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
case 0x49:
if (l2 != 0)
l3 = 4096;
else {
check_for_p2_core2 = true;
l3 = l2 = 4096;
}
break; // code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
case 0x4A:
l3 = 6144;
break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
case 0x4B:
l3 = 8192;
break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
case 0x4C:
l3 = 12288;
break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
case 0x4D:
l3 = 16384;
break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
case 0x4E:
l2 = 6144;
break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
case 0x78:
l2 = 1024;
break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
case 0x79:
l2 = 128;
break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
case 0x7A:
l2 = 256;
break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
case 0x7B:
l2 = 512;
break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
case 0x7C:
l2 = 1024;
break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
case 0x7D:
l2 = 2048;
break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
case 0x7E:
l2 = 256;
break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
case 0x7F:
l2 = 512;
break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
case 0x80:
l2 = 512;
break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
case 0x81:
l2 = 128;
break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
case 0x82:
l2 = 256;
break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
case 0x83:
l2 = 512;
break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
case 0x84:
l2 = 1024;
break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
case 0x85:
l2 = 2048;
break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
case 0x86:
l2 = 512;
break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
case 0x87:
l2 = 1024;
break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
case 0x88:
l3 = 2048;
break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
case 0x89:
l3 = 4096;
break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
case 0x8A:
l3 = 8192;
break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
case 0x8D:
l3 = 3072;
break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
default:
break;
}
}
if (check_for_p2_core2 && l2 == l3) l3 = 0;
l1 *= 1024;
l2 *= 1024;
l3 *= 1024;
}
inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs) {
if (max_std_funcs >= 4)
queryCacheSizes_intel_direct(l1, l2, l3);
else if (max_std_funcs >= 2)
queryCacheSizes_intel_codes(l1, l2, l3);
else
l1 = l2 = l3 = 0;
}
inline void queryCacheSizes_amd(int& l1, int& l2, int& l3) {
int abcd[4];
abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
// First query the max supported function.
EIGEN_CPUID(abcd, 0x80000000, 0);
if (static_cast<numext::uint32_t>(abcd[0]) >= static_cast<numext::uint32_t>(0x80000006)) {
EIGEN_CPUID(abcd, 0x80000005, 0);
l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
EIGEN_CPUID(abcd, 0x80000006, 0);
l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
} else {
l1 = l2 = l3 = 0;
}
}
#endif
/** \internal
* Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
inline void queryCacheSizes(int& l1, int& l2, int& l3) {
#ifdef EIGEN_CPUID
int abcd[4];
const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
// identify the CPU vendor
EIGEN_CPUID(abcd, 0x0, 0);
int max_std_funcs = abcd[0];
if (cpuid_is_vendor(abcd, GenuineIntel))
queryCacheSizes_intel(l1, l2, l3, max_std_funcs);
else if (cpuid_is_vendor(abcd, AuthenticAMD) || cpuid_is_vendor(abcd, AMDisbetter_))
queryCacheSizes_amd(l1, l2, l3);
else
// by default let's use Intel's API
queryCacheSizes_intel(l1, l2, l3, max_std_funcs);
// here is the list of other vendors:
// ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
// ||cpuid_is_vendor(abcd,"CyrixInstead")
// ||cpuid_is_vendor(abcd,"CentaurHauls")
// ||cpuid_is_vendor(abcd,"GenuineTMx86")
// ||cpuid_is_vendor(abcd,"TransmetaCPU")
// ||cpuid_is_vendor(abcd,"RiseRiseRise")
// ||cpuid_is_vendor(abcd,"Geode by NSC")
// ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
// ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
// ||cpuid_is_vendor(abcd,"NexGenDriven")
#else
l1 = l2 = l3 = -1;
#endif
}
/** \internal
* \returns the size in Bytes of the L1 data cache */
inline int queryL1CacheSize() {
int l1(-1), l2, l3;
queryCacheSizes(l1, l2, l3);
return l1;
}
/** \internal
* \returns the size in Bytes of the L2 or L3 cache if this later is present */
inline int queryTopLevelCacheSize() {
int l1, l2(-1), l3(-1);
queryCacheSizes(l1, l2, l3);
return (std::max)(l2, l3);
}
/** \internal
* This wraps C++20's std::construct_at, using placement new instead if it is not available.
*/
#if EIGEN_COMP_CXXVER >= 20
using std::construct_at;
#else
template <class T, class... Args>
EIGEN_DEVICE_FUNC T* construct_at(T* p, Args&&... args) {
return ::new (const_cast<void*>(static_cast<const volatile void*>(p))) T(std::forward<Args>(args)...);
}
#endif
/** \internal
* This wraps C++17's std::destroy_at. If it's not available it calls the destructor.
* The wrapper is not a full replacement for C++20's std::destroy_at as it cannot
* be applied to std::array.
*/
#if EIGEN_COMP_CXXVER >= 17
using std::destroy_at;
#else
template <class T>
EIGEN_DEVICE_FUNC void destroy_at(T* p) {
p->~T();
}
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MEMORY_H