Merged in jdh8/eigen (pull request PR-17)
diff --git a/blas/CMakeLists.txt b/blas/CMakeLists.txt
index 453d587..c35a2fd 100644
--- a/blas/CMakeLists.txt
+++ b/blas/CMakeLists.txt
@@ -18,10 +18,10 @@
 set(EigenBlas_SRCS ${EigenBlas_SRCS}
     complexdots.f
     srotm.f srotmg.f drotm.f drotmg.f
-    lsame.f   chpr2.f  dspmv.f    dtpsv.f ssbmv.f  sspr.f   stpmv.f
-    zhpr2.f  chbmv.f  chpr.f   ctpmv.f     dspr2.f  sspmv.f    stpsv.f
-    zhbmv.f  zhpr.f   ztpmv.f chpmv.f   ctpsv.f    dsbmv.f  dspr.f   dtpmv.f   sspr2.f
-    zhpmv.f    ztpsv.f
+    lsame.f  dspmv.f ssbmv.f
+    chbmv.f  sspmv.f
+    zhbmv.f  chpmv.f dsbmv.f
+    zhpmv.f
     dtbmv.f stbmv.f ctbmv.f ztbmv.f
 )
 else()
diff --git a/blas/GeneralRank1Update.h b/blas/GeneralRank1Update.h
index a3301ed..07d388c 100644
--- a/blas/GeneralRank1Update.h
+++ b/blas/GeneralRank1Update.h
@@ -13,15 +13,29 @@
 namespace internal {
 
 /* Optimized matrix += alpha * uv' */
-template<typename Scalar, typename Index, bool ConjRhs>
-struct general_rank1_update
+template<typename Scalar, typename Index, int StorageOrder, bool ConjLhs, bool ConjRhs>
+struct general_rank1_update;
+
+template<typename Scalar, typename Index, bool ConjLhs, bool ConjRhs>
+struct general_rank1_update<Scalar,Index,ColMajor,ConjLhs,ConjRhs>
 {
   static void run(Index rows, Index cols, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha)
   {
-    typedef Matrix<Scalar,Dynamic,1> PlainVector;
-    internal::conj_if<ConjRhs> cj;
+    typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
+    typedef typename conj_expr_if<ConjLhs,OtherMap>::type ConjRhsType;
+    conj_if<ConjRhs> cj;
+
     for (Index i=0; i<cols; ++i)
-      Map<PlainVector>(mat+stride*i,rows) += alpha * cj(v[i]) * Map<const PlainVector>(u,rows);
+      Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i,rows) += alpha * cj(v[i]) * ConjRhsType(OtherMap(u,rows));
+  }
+};
+
+template<typename Scalar, typename Index, bool ConjLhs, bool ConjRhs>
+struct general_rank1_update<Scalar,Index,RowMajor,ConjLhs,ConjRhs>
+{
+  static void run(Index rows, Index cols, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha)
+  {
+    general_rank1_update<Scalar,Index,ColMajor,ConjRhs,ConjRhs>::run(rows,cols,mat,stride,u,v,alpha);
   }
 };
 
diff --git a/blas/PackedSelfadjointProduct.h b/blas/PackedSelfadjointProduct.h
new file mode 100644
index 0000000..f7c9b93
--- /dev/null
+++ b/blas/PackedSelfadjointProduct.h
@@ -0,0 +1,54 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SELFADJOINT_PACKED_PRODUCT_H
+#define EIGEN_SELFADJOINT_PACKED_PRODUCT_H
+
+namespace internal {
+
+/* Optimized matrix += alpha * uv'
+ * The matrix is in packed form.
+ */
+template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
+struct selfadjoint_packed_rank1_update;
+
+template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
+struct selfadjoint_packed_rank1_update<Scalar,Index,ColMajor,UpLo,ConjLhs,ConjRhs>
+{
+  typedef typename NumTraits<Scalar>::Real RealScalar;
+  static void run(Index size, Scalar* mat, const Scalar* vec, RealScalar alpha)
+  {
+    typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
+    typedef typename conj_expr_if<ConjLhs,OtherMap>::type ConjRhsType;
+    conj_if<ConjRhs> cj;
+
+    for (Index i=0; i<size; ++i)
+    {
+      Map<Matrix<Scalar,Dynamic,1> >(mat, UpLo==Lower ? size-i : (i+1))
+	  += alpha * cj(vec[i]) * ConjRhsType(OtherMap(vec+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1)));
+      //FIXME This should be handled outside.
+      mat[UpLo==Lower ? 0 : i] = real(mat[UpLo==Lower ? 0 : i]);
+      mat += UpLo==Lower ? size-i : (i+1);
+    }
+  }
+};
+
+template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
+struct selfadjoint_packed_rank1_update<Scalar,Index,RowMajor,UpLo,ConjLhs,ConjRhs>
+{
+  typedef typename NumTraits<Scalar>::Real RealScalar;
+  static void run(Index size, Scalar* mat, const Scalar* vec, RealScalar alpha)
+  {
+    selfadjoint_packed_rank1_update<Scalar,Index,ColMajor,UpLo==Lower?Upper:Lower,ConjRhs,ConjLhs>::run(size,mat,vec,alpha);
+  }
+};
+
+} // end namespace internal
+
+#endif // EIGEN_SELFADJOINT_PACKED_PRODUCT_H
diff --git a/blas/PackedTriangularMatrixVector.h b/blas/PackedTriangularMatrixVector.h
new file mode 100644
index 0000000..e9886d5
--- /dev/null
+++ b/blas/PackedTriangularMatrixVector.h
@@ -0,0 +1,79 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H
+#define EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H
+
+namespace internal {
+
+template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int StorageOrder>
+struct packed_triangular_matrix_vector_product;
+
+template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs>
+struct packed_triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,ColMajor>
+{
+  typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
+  enum {
+    IsLower     = (Mode & Lower)   ==Lower,
+    HasUnitDiag = (Mode & UnitDiag)==UnitDiag,
+    HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag
+  };
+  static void run(Index size, const LhsScalar* lhs, const RhsScalar* rhs, ResScalar* res, ResScalar alpha)
+  {
+    internal::conj_if<ConjRhs> cj;
+    typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
+    typedef typename conj_expr_if<ConjLhs,LhsMap>::type ConjLhsType;
+    typedef Map<Matrix<ResScalar,Dynamic,1> > ResMap;
+
+    for (Index i=0; i<size; ++i)
+    {
+      Index s = IsLower&&(HasUnitDiag||HasZeroDiag) ? 1 : 0;
+      Index r = IsLower ? size-i: i+1;
+      if (EIGEN_IMPLIES(HasUnitDiag||HasZeroDiag, (--r)>0))
+	ResMap(res+(IsLower ? s+i : 0),r) += alpha * cj(rhs[i]) * ConjLhsType(LhsMap(lhs+s,r));
+      if (HasUnitDiag)
+	res[i] += alpha * cj(rhs[i]);
+      lhs += IsLower ? size-i: i+1;
+    }
+  };
+};
+
+template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs>
+struct packed_triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,RowMajor>
+{
+  typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
+  enum {
+    IsLower     = (Mode & Lower)   ==Lower,
+    HasUnitDiag = (Mode & UnitDiag)==UnitDiag,
+    HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag
+  };
+  static void run(Index size, const LhsScalar* lhs, const RhsScalar* rhs, ResScalar* res, ResScalar alpha)
+  {
+    internal::conj_if<ConjRhs> cj;
+    typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
+    typedef typename conj_expr_if<ConjLhs,LhsMap>::type ConjLhsType;
+    typedef Map<const Matrix<RhsScalar,Dynamic,1> > RhsMap;
+    typedef typename conj_expr_if<ConjRhs,RhsMap>::type ConjRhsType;
+
+    for (Index i=0; i<size; ++i)
+    {
+      Index s = !IsLower&&(HasUnitDiag||HasZeroDiag) ? 1 : 0;
+      Index r = IsLower ? i+1 : size-i;
+      if (EIGEN_IMPLIES(HasUnitDiag||HasZeroDiag, (--r)>0))
+	res[i] += alpha * (ConjLhsType(LhsMap(lhs+s,r)).cwiseProduct(ConjRhsType(RhsMap(rhs+(IsLower ? 0 : s+i),r)))).sum();
+      if (HasUnitDiag)
+	res[i] += alpha * cj(rhs[i]);
+      lhs += IsLower ? i+1 : size-i;
+    }
+  };
+};
+
+} // end namespace internal
+
+#endif // EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H
diff --git a/blas/PackedTriangularSolverVector.h b/blas/PackedTriangularSolverVector.h
new file mode 100644
index 0000000..5c0bb4b
--- /dev/null
+++ b/blas/PackedTriangularSolverVector.h
@@ -0,0 +1,88 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_PACKED_TRIANGULAR_SOLVER_VECTOR_H
+#define EIGEN_PACKED_TRIANGULAR_SOLVER_VECTOR_H
+
+namespace internal {
+
+template<typename LhsScalar, typename RhsScalar, typename Index, int Side, int Mode, bool Conjugate, int StorageOrder>
+struct packed_triangular_solve_vector;
+
+// forward and backward substitution, row-major, rhs is a vector
+template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate>
+struct packed_triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheLeft, Mode, Conjugate, RowMajor>
+{
+  enum {
+    IsLower = (Mode&Lower)==Lower
+  };
+  static void run(Index size, const LhsScalar* lhs, RhsScalar* rhs)
+  {
+    internal::conj_if<Conjugate> cj;
+    typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
+    typedef typename conj_expr_if<Conjugate,LhsMap>::type ConjLhsType;
+
+    lhs += IsLower ? 0 : (size*(size+1)>>1)-1;
+    for(Index pi=0; pi<size; ++pi)
+    {
+      Index i = IsLower ? pi : size-pi-1;
+      Index s = IsLower ? 0 : 1;
+      if (pi>0)
+	rhs[i] -= (ConjLhsType(LhsMap(lhs+s,pi))
+	    .cwiseProduct(Map<const Matrix<RhsScalar,Dynamic,1> >(rhs+(IsLower ? 0 : i+1),pi))).sum();
+      if (!(Mode & UnitDiag))
+	rhs[i] /= cj(lhs[IsLower ? i : 0]);
+      IsLower ? lhs += pi+1 : lhs -= pi+2;
+    }
+  }
+};
+
+// forward and backward substitution, column-major, rhs is a vector
+template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate>
+struct packed_triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheLeft, Mode, Conjugate, ColMajor>
+{
+  enum {
+    IsLower = (Mode&Lower)==Lower
+  };
+  static void run(Index size, const LhsScalar* lhs, RhsScalar* rhs)
+  {
+    internal::conj_if<Conjugate> cj;
+    typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
+    typedef typename conj_expr_if<Conjugate,LhsMap>::type ConjLhsType;
+
+    lhs += IsLower ? 0 : size*(size-1)>>1;
+    for(Index pi=0; pi<size; ++pi)
+    {
+      Index i = IsLower ? pi : size-pi-1;
+      Index r = size - pi - 1;
+      if (!(Mode & UnitDiag))
+	rhs[i] /= cj(lhs[IsLower ? 0 : i]);
+      if (r>0)
+	Map<Matrix<RhsScalar,Dynamic,1> >(rhs+(IsLower? i+1 : 0),r) -=
+	    rhs[i] * ConjLhsType(LhsMap(lhs+(IsLower? 1 : 0),r));
+      IsLower ? lhs += size-pi : lhs -= r;
+    }
+  }
+};
+
+template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate, int StorageOrder>
+struct packed_triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheRight, Mode, Conjugate, StorageOrder>
+{
+  static void run(Index size, const LhsScalar* lhs, RhsScalar* rhs)
+  {
+    packed_triangular_solve_vector<LhsScalar,RhsScalar,Index,OnTheLeft,
+	((Mode&Upper)==Upper ? Lower : Upper) | (Mode&UnitDiag),
+	Conjugate,StorageOrder==RowMajor?ColMajor:RowMajor
+      >::run(size, lhs, rhs);
+  }
+};
+
+} // end namespace internal
+
+#endif // EIGEN_PACKED_TRIANGULAR_SOLVER_VECTOR_H
diff --git a/blas/Rank2Update.h b/blas/Rank2Update.h
index e7a5eea..8e1a676 100644
--- a/blas/Rank2Update.h
+++ b/blas/Rank2Update.h
@@ -16,38 +16,38 @@
  * This is the low-level version of SelfadjointRank2Update.h
  */
 template<typename Scalar, typename Index, int UpLo>
-struct rank2_update_selector;
-
-template<typename Scalar, typename Index>
-struct rank2_update_selector<Scalar,Index,Upper>
+struct rank2_update_selector
 {
-  static void run(Index size, Scalar* mat, Index stride, const Scalar* _u, const Scalar* _v, Scalar alpha)
+  static void run(Index size, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha)
   {
-    typedef Matrix<Scalar,Dynamic,1> PlainVector;
-    Map<const PlainVector> u(_u, size), v(_v, size);
-
+    typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
     for (Index i=0; i<size; ++i)
     {
-      Map<PlainVector>(mat+stride*i, i+1) +=
-		  conj(alpha) * conj(_u[i]) * v.head(i+1)
-		+ alpha * conj(_v[i]) * u.head(i+1);
+      Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1)) +=
+			conj(alpha) * conj(u[i]) * OtherMap(v+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1))
+		      + alpha * conj(v[i]) * OtherMap(u+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1));
     }
   }
 };
 
-template<typename Scalar, typename Index>
-struct rank2_update_selector<Scalar,Index,Lower>
+/* Optimized selfadjoint matrix += alpha * uv' + conj(alpha)*vu'
+ * The matrix is in packed form.
+ */
+template<typename Scalar, typename Index, int UpLo>
+struct packed_rank2_update_selector
 {
-  static void run(Index size, Scalar* mat, Index stride, const Scalar* _u, const Scalar* _v, Scalar alpha)
+  static void run(Index size, Scalar* mat, const Scalar* u, const Scalar* v, Scalar alpha)
   {
-    typedef Matrix<Scalar,Dynamic,1> PlainVector;
-    Map<const PlainVector> u(_u, size), v(_v, size);
-
+    typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
+    Index offset = 0;
     for (Index i=0; i<size; ++i)
     {
-      Map<PlainVector>(mat+(stride+1)*i, size-i) +=
-		  conj(alpha) * conj(_u[i]) * v.tail(size-i)
-		+ alpha * conj(_v[i]) * u.tail(size-i);
+      Map<Matrix<Scalar,Dynamic,1> >(mat+offset, UpLo==Lower ? size-i : (i+1)) +=
+			conj(alpha) * conj(u[i]) * OtherMap(v+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1))
+		      + alpha * conj(v[i]) * OtherMap(u+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1));
+      //FIXME This should be handled outside.
+      mat[offset+(UpLo==Lower ? 0 : i)] = real(mat[offset+(UpLo==Lower ? 0 : i)]);
+      offset += UpLo==Lower ? size-i : (i+1);
     }
   }
 };
diff --git a/blas/chpr.f b/blas/chpr.f
deleted file mode 100644
index 11bd5c6..0000000
--- a/blas/chpr.f
+++ /dev/null
@@ -1,220 +0,0 @@
-      SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP)
-*     .. Scalar Arguments ..
-      REAL ALPHA
-      INTEGER INCX,N
-      CHARACTER UPLO
-*     ..
-*     .. Array Arguments ..
-      COMPLEX AP(*),X(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  CHPR    performs the hermitian rank 1 operation
-*
-*     A := alpha*x*conjg( x' ) + A,
-*
-*  where alpha is a real scalar, x is an n element vector and A is an
-*  n by n hermitian matrix, supplied in packed form.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the upper or lower
-*           triangular part of the matrix A is supplied in the packed
-*           array AP as follows:
-*
-*              UPLO = 'U' or 'u'   The upper triangular part of A is
-*                                  supplied in AP.
-*
-*              UPLO = 'L' or 'l'   The lower triangular part of A is
-*                                  supplied in AP.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  ALPHA  - REAL            .
-*           On entry, ALPHA specifies the scalar alpha.
-*           Unchanged on exit.
-*
-*  X      - COMPLEX          array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element vector x.
-*           Unchanged on exit.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  AP     - COMPLEX          array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular part of the hermitian matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
-*           and a( 2, 2 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the upper triangular part of the
-*           updated matrix.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular part of the hermitian matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
-*           and a( 3, 1 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the lower triangular part of the
-*           updated matrix.
-*           Note that the imaginary parts of the diagonal elements need
-*           not be set, they are assumed to be zero, and on exit they
-*           are set to zero.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      COMPLEX ZERO
-      PARAMETER (ZERO= (0.0E+0,0.0E+0))
-*     ..
-*     .. Local Scalars ..
-      COMPLEX TEMP
-      INTEGER I,INFO,IX,J,JX,K,KK,KX
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*     .. Intrinsic Functions ..
-      INTRINSIC CONJG,REAL
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (N.LT.0) THEN
-          INFO = 2
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 5
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('CHPR  ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
-*
-*     Set the start point in X if the increment is not unity.
-*
-      IF (INCX.LE.0) THEN
-          KX = 1 - (N-1)*INCX
-      ELSE IF (INCX.NE.1) THEN
-          KX = 1
-      END IF
-*
-*     Start the operations. In this version the elements of the array AP
-*     are accessed sequentially with one pass through AP.
-*
-      KK = 1
-      IF (LSAME(UPLO,'U')) THEN
-*
-*        Form  A  when upper triangle is stored in AP.
-*
-          IF (INCX.EQ.1) THEN
-              DO 20 J = 1,N
-                  IF (X(J).NE.ZERO) THEN
-                      TEMP = ALPHA*CONJG(X(J))
-                      K = KK
-                      DO 10 I = 1,J - 1
-                          AP(K) = AP(K) + X(I)*TEMP
-                          K = K + 1
-   10                 CONTINUE
-                      AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(J)*TEMP)
-                  ELSE
-                      AP(KK+J-1) = REAL(AP(KK+J-1))
-                  END IF
-                  KK = KK + J
-   20         CONTINUE
-          ELSE
-              JX = KX
-              DO 40 J = 1,N
-                  IF (X(JX).NE.ZERO) THEN
-                      TEMP = ALPHA*CONJG(X(JX))
-                      IX = KX
-                      DO 30 K = KK,KK + J - 2
-                          AP(K) = AP(K) + X(IX)*TEMP
-                          IX = IX + INCX
-   30                 CONTINUE
-                      AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(JX)*TEMP)
-                  ELSE
-                      AP(KK+J-1) = REAL(AP(KK+J-1))
-                  END IF
-                  JX = JX + INCX
-                  KK = KK + J
-   40         CONTINUE
-          END IF
-      ELSE
-*
-*        Form  A  when lower triangle is stored in AP.
-*
-          IF (INCX.EQ.1) THEN
-              DO 60 J = 1,N
-                  IF (X(J).NE.ZERO) THEN
-                      TEMP = ALPHA*CONJG(X(J))
-                      AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(J))
-                      K = KK + 1
-                      DO 50 I = J + 1,N
-                          AP(K) = AP(K) + X(I)*TEMP
-                          K = K + 1
-   50                 CONTINUE
-                  ELSE
-                      AP(KK) = REAL(AP(KK))
-                  END IF
-                  KK = KK + N - J + 1
-   60         CONTINUE
-          ELSE
-              JX = KX
-              DO 80 J = 1,N
-                  IF (X(JX).NE.ZERO) THEN
-                      TEMP = ALPHA*CONJG(X(JX))
-                      AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(JX))
-                      IX = JX
-                      DO 70 K = KK + 1,KK + N - J
-                          IX = IX + INCX
-                          AP(K) = AP(K) + X(IX)*TEMP
-   70                 CONTINUE
-                  ELSE
-                      AP(KK) = REAL(AP(KK))
-                  END IF
-                  JX = JX + INCX
-                  KK = KK + N - J + 1
-   80         CONTINUE
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of CHPR  .
-*
-      END
diff --git a/blas/chpr2.f b/blas/chpr2.f
deleted file mode 100644
index a0020ef..0000000
--- a/blas/chpr2.f
+++ /dev/null
@@ -1,255 +0,0 @@
-      SUBROUTINE CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
-*     .. Scalar Arguments ..
-      COMPLEX ALPHA
-      INTEGER INCX,INCY,N
-      CHARACTER UPLO
-*     ..
-*     .. Array Arguments ..
-      COMPLEX AP(*),X(*),Y(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  CHPR2  performs the hermitian rank 2 operation
-*
-*     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
-*
-*  where alpha is a scalar, x and y are n element vectors and A is an
-*  n by n hermitian matrix, supplied in packed form.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the upper or lower
-*           triangular part of the matrix A is supplied in the packed
-*           array AP as follows:
-*
-*              UPLO = 'U' or 'u'   The upper triangular part of A is
-*                                  supplied in AP.
-*
-*              UPLO = 'L' or 'l'   The lower triangular part of A is
-*                                  supplied in AP.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  ALPHA  - COMPLEX         .
-*           On entry, ALPHA specifies the scalar alpha.
-*           Unchanged on exit.
-*
-*  X      - COMPLEX          array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element vector x.
-*           Unchanged on exit.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  Y      - COMPLEX          array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCY ) ).
-*           Before entry, the incremented array Y must contain the n
-*           element vector y.
-*           Unchanged on exit.
-*
-*  INCY   - INTEGER.
-*           On entry, INCY specifies the increment for the elements of
-*           Y. INCY must not be zero.
-*           Unchanged on exit.
-*
-*  AP     - COMPLEX          array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular part of the hermitian matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
-*           and a( 2, 2 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the upper triangular part of the
-*           updated matrix.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular part of the hermitian matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
-*           and a( 3, 1 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the lower triangular part of the
-*           updated matrix.
-*           Note that the imaginary parts of the diagonal elements need
-*           not be set, they are assumed to be zero, and on exit they
-*           are set to zero.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      COMPLEX ZERO
-      PARAMETER (ZERO= (0.0E+0,0.0E+0))
-*     ..
-*     .. Local Scalars ..
-      COMPLEX TEMP1,TEMP2
-      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*     .. Intrinsic Functions ..
-      INTRINSIC CONJG,REAL
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (N.LT.0) THEN
-          INFO = 2
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 5
-      ELSE IF (INCY.EQ.0) THEN
-          INFO = 7
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('CHPR2 ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
-*
-*     Set up the start points in X and Y if the increments are not both
-*     unity.
-*
-      IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
-          IF (INCX.GT.0) THEN
-              KX = 1
-          ELSE
-              KX = 1 - (N-1)*INCX
-          END IF
-          IF (INCY.GT.0) THEN
-              KY = 1
-          ELSE
-              KY = 1 - (N-1)*INCY
-          END IF
-          JX = KX
-          JY = KY
-      END IF
-*
-*     Start the operations. In this version the elements of the array AP
-*     are accessed sequentially with one pass through AP.
-*
-      KK = 1
-      IF (LSAME(UPLO,'U')) THEN
-*
-*        Form  A  when upper triangle is stored in AP.
-*
-          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
-              DO 20 J = 1,N
-                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*CONJG(Y(J))
-                      TEMP2 = CONJG(ALPHA*X(J))
-                      K = KK
-                      DO 10 I = 1,J - 1
-                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
-                          K = K + 1
-   10                 CONTINUE
-                      AP(KK+J-1) = REAL(AP(KK+J-1)) +
-     +                             REAL(X(J)*TEMP1+Y(J)*TEMP2)
-                  ELSE
-                      AP(KK+J-1) = REAL(AP(KK+J-1))
-                  END IF
-                  KK = KK + J
-   20         CONTINUE
-          ELSE
-              DO 40 J = 1,N
-                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*CONJG(Y(JY))
-                      TEMP2 = CONJG(ALPHA*X(JX))
-                      IX = KX
-                      IY = KY
-                      DO 30 K = KK,KK + J - 2
-                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
-                          IX = IX + INCX
-                          IY = IY + INCY
-   30                 CONTINUE
-                      AP(KK+J-1) = REAL(AP(KK+J-1)) +
-     +                             REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
-                  ELSE
-                      AP(KK+J-1) = REAL(AP(KK+J-1))
-                  END IF
-                  JX = JX + INCX
-                  JY = JY + INCY
-                  KK = KK + J
-   40         CONTINUE
-          END IF
-      ELSE
-*
-*        Form  A  when lower triangle is stored in AP.
-*
-          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
-              DO 60 J = 1,N
-                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*CONJG(Y(J))
-                      TEMP2 = CONJG(ALPHA*X(J))
-                      AP(KK) = REAL(AP(KK)) +
-     +                         REAL(X(J)*TEMP1+Y(J)*TEMP2)
-                      K = KK + 1
-                      DO 50 I = J + 1,N
-                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
-                          K = K + 1
-   50                 CONTINUE
-                  ELSE
-                      AP(KK) = REAL(AP(KK))
-                  END IF
-                  KK = KK + N - J + 1
-   60         CONTINUE
-          ELSE
-              DO 80 J = 1,N
-                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*CONJG(Y(JY))
-                      TEMP2 = CONJG(ALPHA*X(JX))
-                      AP(KK) = REAL(AP(KK)) +
-     +                         REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
-                      IX = JX
-                      IY = JY
-                      DO 70 K = KK + 1,KK + N - J
-                          IX = IX + INCX
-                          IY = IY + INCY
-                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
-   70                 CONTINUE
-                  ELSE
-                      AP(KK) = REAL(AP(KK))
-                  END IF
-                  JX = JX + INCX
-                  JY = JY + INCY
-                  KK = KK + N - J + 1
-   80         CONTINUE
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of CHPR2 .
-*
-      END
diff --git a/blas/common.h b/blas/common.h
index e6398e9..2bf642c 100644
--- a/blas/common.h
+++ b/blas/common.h
@@ -75,6 +75,9 @@
 namespace Eigen {
 #include "BandTriangularSolver.h"
 #include "GeneralRank1Update.h"
+#include "PackedSelfadjointProduct.h"
+#include "PackedTriangularMatrixVector.h"
+#include "PackedTriangularSolverVector.h"
 #include "Rank2Update.h"
 }
 
diff --git a/blas/ctpmv.f b/blas/ctpmv.f
deleted file mode 100644
index b63742c..0000000
--- a/blas/ctpmv.f
+++ /dev/null
@@ -1,329 +0,0 @@
-      SUBROUTINE CTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
-*     .. Scalar Arguments ..
-      INTEGER INCX,N
-      CHARACTER DIAG,TRANS,UPLO
-*     ..
-*     .. Array Arguments ..
-      COMPLEX AP(*),X(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  CTPMV  performs one of the matrix-vector operations
-*
-*     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x,
-*
-*  where x is an n element vector and  A is an n by n unit, or non-unit,
-*  upper or lower triangular matrix, supplied in packed form.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the matrix is an upper or
-*           lower triangular matrix as follows:
-*
-*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
-*
-*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
-*
-*           Unchanged on exit.
-*
-*  TRANS  - CHARACTER*1.
-*           On entry, TRANS specifies the operation to be performed as
-*           follows:
-*
-*              TRANS = 'N' or 'n'   x := A*x.
-*
-*              TRANS = 'T' or 't'   x := A'*x.
-*
-*              TRANS = 'C' or 'c'   x := conjg( A' )*x.
-*
-*           Unchanged on exit.
-*
-*  DIAG   - CHARACTER*1.
-*           On entry, DIAG specifies whether or not A is unit
-*           triangular as follows:
-*
-*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
-*
-*              DIAG = 'N' or 'n'   A is not assumed to be unit
-*                                  triangular.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  AP     - COMPLEX          array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
-*           respectively, and so on.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
-*           respectively, and so on.
-*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
-*           A are not referenced, but are assumed to be unity.
-*           Unchanged on exit.
-*
-*  X      - COMPLEX          array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element vector x. On exit, X is overwritten with the
-*           tranformed vector x.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      COMPLEX ZERO
-      PARAMETER (ZERO= (0.0E+0,0.0E+0))
-*     ..
-*     .. Local Scalars ..
-      COMPLEX TEMP
-      INTEGER I,INFO,IX,J,JX,K,KK,KX
-      LOGICAL NOCONJ,NOUNIT
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*     .. Intrinsic Functions ..
-      INTRINSIC CONJG
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
-     +         .NOT.LSAME(TRANS,'C')) THEN
-          INFO = 2
-      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
-          INFO = 3
-      ELSE IF (N.LT.0) THEN
-          INFO = 4
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 7
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('CTPMV ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF (N.EQ.0) RETURN
-*
-      NOCONJ = LSAME(TRANS,'T')
-      NOUNIT = LSAME(DIAG,'N')
-*
-*     Set up the start point in X if the increment is not unity. This
-*     will be  ( N - 1 )*INCX  too small for descending loops.
-*
-      IF (INCX.LE.0) THEN
-          KX = 1 - (N-1)*INCX
-      ELSE IF (INCX.NE.1) THEN
-          KX = 1
-      END IF
-*
-*     Start the operations. In this version the elements of AP are
-*     accessed sequentially with one pass through AP.
-*
-      IF (LSAME(TRANS,'N')) THEN
-*
-*        Form  x:= A*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 20 J = 1,N
-                      IF (X(J).NE.ZERO) THEN
-                          TEMP = X(J)
-                          K = KK
-                          DO 10 I = 1,J - 1
-                              X(I) = X(I) + TEMP*AP(K)
-                              K = K + 1
-   10                     CONTINUE
-                          IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
-                      END IF
-                      KK = KK + J
-   20             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 40 J = 1,N
-                      IF (X(JX).NE.ZERO) THEN
-                          TEMP = X(JX)
-                          IX = KX
-                          DO 30 K = KK,KK + J - 2
-                              X(IX) = X(IX) + TEMP*AP(K)
-                              IX = IX + INCX
-   30                     CONTINUE
-                          IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
-                      END IF
-                      JX = JX + INCX
-                      KK = KK + J
-   40             CONTINUE
-              END IF
-          ELSE
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 60 J = N,1,-1
-                      IF (X(J).NE.ZERO) THEN
-                          TEMP = X(J)
-                          K = KK
-                          DO 50 I = N,J + 1,-1
-                              X(I) = X(I) + TEMP*AP(K)
-                              K = K - 1
-   50                     CONTINUE
-                          IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
-                      END IF
-                      KK = KK - (N-J+1)
-   60             CONTINUE
-              ELSE
-                  KX = KX + (N-1)*INCX
-                  JX = KX
-                  DO 80 J = N,1,-1
-                      IF (X(JX).NE.ZERO) THEN
-                          TEMP = X(JX)
-                          IX = KX
-                          DO 70 K = KK,KK - (N- (J+1)),-1
-                              X(IX) = X(IX) + TEMP*AP(K)
-                              IX = IX - INCX
-   70                     CONTINUE
-                          IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
-                      END IF
-                      JX = JX - INCX
-                      KK = KK - (N-J+1)
-   80             CONTINUE
-              END IF
-          END IF
-      ELSE
-*
-*        Form  x := A'*x  or  x := conjg( A' )*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 110 J = N,1,-1
-                      TEMP = X(J)
-                      K = KK - 1
-                      IF (NOCONJ) THEN
-                          IF (NOUNIT) TEMP = TEMP*AP(KK)
-                          DO 90 I = J - 1,1,-1
-                              TEMP = TEMP + AP(K)*X(I)
-                              K = K - 1
-   90                     CONTINUE
-                      ELSE
-                          IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK))
-                          DO 100 I = J - 1,1,-1
-                              TEMP = TEMP + CONJG(AP(K))*X(I)
-                              K = K - 1
-  100                     CONTINUE
-                      END IF
-                      X(J) = TEMP
-                      KK = KK - J
-  110             CONTINUE
-              ELSE
-                  JX = KX + (N-1)*INCX
-                  DO 140 J = N,1,-1
-                      TEMP = X(JX)
-                      IX = JX
-                      IF (NOCONJ) THEN
-                          IF (NOUNIT) TEMP = TEMP*AP(KK)
-                          DO 120 K = KK - 1,KK - J + 1,-1
-                              IX = IX - INCX
-                              TEMP = TEMP + AP(K)*X(IX)
-  120                     CONTINUE
-                      ELSE
-                          IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK))
-                          DO 130 K = KK - 1,KK - J + 1,-1
-                              IX = IX - INCX
-                              TEMP = TEMP + CONJG(AP(K))*X(IX)
-  130                     CONTINUE
-                      END IF
-                      X(JX) = TEMP
-                      JX = JX - INCX
-                      KK = KK - J
-  140             CONTINUE
-              END IF
-          ELSE
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 170 J = 1,N
-                      TEMP = X(J)
-                      K = KK + 1
-                      IF (NOCONJ) THEN
-                          IF (NOUNIT) TEMP = TEMP*AP(KK)
-                          DO 150 I = J + 1,N
-                              TEMP = TEMP + AP(K)*X(I)
-                              K = K + 1
-  150                     CONTINUE
-                      ELSE
-                          IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK))
-                          DO 160 I = J + 1,N
-                              TEMP = TEMP + CONJG(AP(K))*X(I)
-                              K = K + 1
-  160                     CONTINUE
-                      END IF
-                      X(J) = TEMP
-                      KK = KK + (N-J+1)
-  170             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 200 J = 1,N
-                      TEMP = X(JX)
-                      IX = JX
-                      IF (NOCONJ) THEN
-                          IF (NOUNIT) TEMP = TEMP*AP(KK)
-                          DO 180 K = KK + 1,KK + N - J
-                              IX = IX + INCX
-                              TEMP = TEMP + AP(K)*X(IX)
-  180                     CONTINUE
-                      ELSE
-                          IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK))
-                          DO 190 K = KK + 1,KK + N - J
-                              IX = IX + INCX
-                              TEMP = TEMP + CONJG(AP(K))*X(IX)
-  190                     CONTINUE
-                      END IF
-                      X(JX) = TEMP
-                      JX = JX + INCX
-                      KK = KK + (N-J+1)
-  200             CONTINUE
-              END IF
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of CTPMV .
-*
-      END
diff --git a/blas/ctpsv.f b/blas/ctpsv.f
deleted file mode 100644
index 1804797..0000000
--- a/blas/ctpsv.f
+++ /dev/null
@@ -1,332 +0,0 @@
-      SUBROUTINE CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
-*     .. Scalar Arguments ..
-      INTEGER INCX,N
-      CHARACTER DIAG,TRANS,UPLO
-*     ..
-*     .. Array Arguments ..
-      COMPLEX AP(*),X(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  CTPSV  solves one of the systems of equations
-*
-*     A*x = b,   or   A'*x = b,   or   conjg( A' )*x = b,
-*
-*  where b and x are n element vectors and A is an n by n unit, or
-*  non-unit, upper or lower triangular matrix, supplied in packed form.
-*
-*  No test for singularity or near-singularity is included in this
-*  routine. Such tests must be performed before calling this routine.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the matrix is an upper or
-*           lower triangular matrix as follows:
-*
-*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
-*
-*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
-*
-*           Unchanged on exit.
-*
-*  TRANS  - CHARACTER*1.
-*           On entry, TRANS specifies the equations to be solved as
-*           follows:
-*
-*              TRANS = 'N' or 'n'   A*x = b.
-*
-*              TRANS = 'T' or 't'   A'*x = b.
-*
-*              TRANS = 'C' or 'c'   conjg( A' )*x = b.
-*
-*           Unchanged on exit.
-*
-*  DIAG   - CHARACTER*1.
-*           On entry, DIAG specifies whether or not A is unit
-*           triangular as follows:
-*
-*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
-*
-*              DIAG = 'N' or 'n'   A is not assumed to be unit
-*                                  triangular.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  AP     - COMPLEX          array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
-*           respectively, and so on.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
-*           respectively, and so on.
-*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
-*           A are not referenced, but are assumed to be unity.
-*           Unchanged on exit.
-*
-*  X      - COMPLEX          array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element right-hand side vector b. On exit, X is overwritten
-*           with the solution vector x.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      COMPLEX ZERO
-      PARAMETER (ZERO= (0.0E+0,0.0E+0))
-*     ..
-*     .. Local Scalars ..
-      COMPLEX TEMP
-      INTEGER I,INFO,IX,J,JX,K,KK,KX
-      LOGICAL NOCONJ,NOUNIT
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*     .. Intrinsic Functions ..
-      INTRINSIC CONJG
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
-     +         .NOT.LSAME(TRANS,'C')) THEN
-          INFO = 2
-      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
-          INFO = 3
-      ELSE IF (N.LT.0) THEN
-          INFO = 4
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 7
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('CTPSV ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF (N.EQ.0) RETURN
-*
-      NOCONJ = LSAME(TRANS,'T')
-      NOUNIT = LSAME(DIAG,'N')
-*
-*     Set up the start point in X if the increment is not unity. This
-*     will be  ( N - 1 )*INCX  too small for descending loops.
-*
-      IF (INCX.LE.0) THEN
-          KX = 1 - (N-1)*INCX
-      ELSE IF (INCX.NE.1) THEN
-          KX = 1
-      END IF
-*
-*     Start the operations. In this version the elements of AP are
-*     accessed sequentially with one pass through AP.
-*
-      IF (LSAME(TRANS,'N')) THEN
-*
-*        Form  x := inv( A )*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 20 J = N,1,-1
-                      IF (X(J).NE.ZERO) THEN
-                          IF (NOUNIT) X(J) = X(J)/AP(KK)
-                          TEMP = X(J)
-                          K = KK - 1
-                          DO 10 I = J - 1,1,-1
-                              X(I) = X(I) - TEMP*AP(K)
-                              K = K - 1
-   10                     CONTINUE
-                      END IF
-                      KK = KK - J
-   20             CONTINUE
-              ELSE
-                  JX = KX + (N-1)*INCX
-                  DO 40 J = N,1,-1
-                      IF (X(JX).NE.ZERO) THEN
-                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
-                          TEMP = X(JX)
-                          IX = JX
-                          DO 30 K = KK - 1,KK - J + 1,-1
-                              IX = IX - INCX
-                              X(IX) = X(IX) - TEMP*AP(K)
-   30                     CONTINUE
-                      END IF
-                      JX = JX - INCX
-                      KK = KK - J
-   40             CONTINUE
-              END IF
-          ELSE
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 60 J = 1,N
-                      IF (X(J).NE.ZERO) THEN
-                          IF (NOUNIT) X(J) = X(J)/AP(KK)
-                          TEMP = X(J)
-                          K = KK + 1
-                          DO 50 I = J + 1,N
-                              X(I) = X(I) - TEMP*AP(K)
-                              K = K + 1
-   50                     CONTINUE
-                      END IF
-                      KK = KK + (N-J+1)
-   60             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 80 J = 1,N
-                      IF (X(JX).NE.ZERO) THEN
-                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
-                          TEMP = X(JX)
-                          IX = JX
-                          DO 70 K = KK + 1,KK + N - J
-                              IX = IX + INCX
-                              X(IX) = X(IX) - TEMP*AP(K)
-   70                     CONTINUE
-                      END IF
-                      JX = JX + INCX
-                      KK = KK + (N-J+1)
-   80             CONTINUE
-              END IF
-          END IF
-      ELSE
-*
-*        Form  x := inv( A' )*x  or  x := inv( conjg( A' ) )*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 110 J = 1,N
-                      TEMP = X(J)
-                      K = KK
-                      IF (NOCONJ) THEN
-                          DO 90 I = 1,J - 1
-                              TEMP = TEMP - AP(K)*X(I)
-                              K = K + 1
-   90                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
-                      ELSE
-                          DO 100 I = 1,J - 1
-                              TEMP = TEMP - CONJG(AP(K))*X(I)
-                              K = K + 1
-  100                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1))
-                      END IF
-                      X(J) = TEMP
-                      KK = KK + J
-  110             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 140 J = 1,N
-                      TEMP = X(JX)
-                      IX = KX
-                      IF (NOCONJ) THEN
-                          DO 120 K = KK,KK + J - 2
-                              TEMP = TEMP - AP(K)*X(IX)
-                              IX = IX + INCX
-  120                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
-                      ELSE
-                          DO 130 K = KK,KK + J - 2
-                              TEMP = TEMP - CONJG(AP(K))*X(IX)
-                              IX = IX + INCX
-  130                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1))
-                      END IF
-                      X(JX) = TEMP
-                      JX = JX + INCX
-                      KK = KK + J
-  140             CONTINUE
-              END IF
-          ELSE
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 170 J = N,1,-1
-                      TEMP = X(J)
-                      K = KK
-                      IF (NOCONJ) THEN
-                          DO 150 I = N,J + 1,-1
-                              TEMP = TEMP - AP(K)*X(I)
-                              K = K - 1
-  150                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
-                      ELSE
-                          DO 160 I = N,J + 1,-1
-                              TEMP = TEMP - CONJG(AP(K))*X(I)
-                              K = K - 1
-  160                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J))
-                      END IF
-                      X(J) = TEMP
-                      KK = KK - (N-J+1)
-  170             CONTINUE
-              ELSE
-                  KX = KX + (N-1)*INCX
-                  JX = KX
-                  DO 200 J = N,1,-1
-                      TEMP = X(JX)
-                      IX = KX
-                      IF (NOCONJ) THEN
-                          DO 180 K = KK,KK - (N- (J+1)),-1
-                              TEMP = TEMP - AP(K)*X(IX)
-                              IX = IX - INCX
-  180                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
-                      ELSE
-                          DO 190 K = KK,KK - (N- (J+1)),-1
-                              TEMP = TEMP - CONJG(AP(K))*X(IX)
-                              IX = IX - INCX
-  190                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J))
-                      END IF
-                      X(JX) = TEMP
-                      JX = JX - INCX
-                      KK = KK - (N-J+1)
-  200             CONTINUE
-              END IF
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of CTPSV .
-*
-      END
diff --git a/blas/dspr.f b/blas/dspr.f
deleted file mode 100644
index 538e4f7..0000000
--- a/blas/dspr.f
+++ /dev/null
@@ -1,202 +0,0 @@
-      SUBROUTINE DSPR(UPLO,N,ALPHA,X,INCX,AP)
-*     .. Scalar Arguments ..
-      DOUBLE PRECISION ALPHA
-      INTEGER INCX,N
-      CHARACTER UPLO
-*     ..
-*     .. Array Arguments ..
-      DOUBLE PRECISION AP(*),X(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  DSPR    performs the symmetric rank 1 operation
-*
-*     A := alpha*x*x' + A,
-*
-*  where alpha is a real scalar, x is an n element vector and A is an
-*  n by n symmetric matrix, supplied in packed form.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the upper or lower
-*           triangular part of the matrix A is supplied in the packed
-*           array AP as follows:
-*
-*              UPLO = 'U' or 'u'   The upper triangular part of A is
-*                                  supplied in AP.
-*
-*              UPLO = 'L' or 'l'   The lower triangular part of A is
-*                                  supplied in AP.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  ALPHA  - DOUBLE PRECISION.
-*           On entry, ALPHA specifies the scalar alpha.
-*           Unchanged on exit.
-*
-*  X      - DOUBLE PRECISION array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element vector x.
-*           Unchanged on exit.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  AP     - DOUBLE PRECISION array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular part of the symmetric matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
-*           and a( 2, 2 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the upper triangular part of the
-*           updated matrix.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular part of the symmetric matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
-*           and a( 3, 1 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the lower triangular part of the
-*           updated matrix.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      DOUBLE PRECISION ZERO
-      PARAMETER (ZERO=0.0D+0)
-*     ..
-*     .. Local Scalars ..
-      DOUBLE PRECISION TEMP
-      INTEGER I,INFO,IX,J,JX,K,KK,KX
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (N.LT.0) THEN
-          INFO = 2
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 5
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('DSPR  ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
-*
-*     Set the start point in X if the increment is not unity.
-*
-      IF (INCX.LE.0) THEN
-          KX = 1 - (N-1)*INCX
-      ELSE IF (INCX.NE.1) THEN
-          KX = 1
-      END IF
-*
-*     Start the operations. In this version the elements of the array AP
-*     are accessed sequentially with one pass through AP.
-*
-      KK = 1
-      IF (LSAME(UPLO,'U')) THEN
-*
-*        Form  A  when upper triangle is stored in AP.
-*
-          IF (INCX.EQ.1) THEN
-              DO 20 J = 1,N
-                  IF (X(J).NE.ZERO) THEN
-                      TEMP = ALPHA*X(J)
-                      K = KK
-                      DO 10 I = 1,J
-                          AP(K) = AP(K) + X(I)*TEMP
-                          K = K + 1
-   10                 CONTINUE
-                  END IF
-                  KK = KK + J
-   20         CONTINUE
-          ELSE
-              JX = KX
-              DO 40 J = 1,N
-                  IF (X(JX).NE.ZERO) THEN
-                      TEMP = ALPHA*X(JX)
-                      IX = KX
-                      DO 30 K = KK,KK + J - 1
-                          AP(K) = AP(K) + X(IX)*TEMP
-                          IX = IX + INCX
-   30                 CONTINUE
-                  END IF
-                  JX = JX + INCX
-                  KK = KK + J
-   40         CONTINUE
-          END IF
-      ELSE
-*
-*        Form  A  when lower triangle is stored in AP.
-*
-          IF (INCX.EQ.1) THEN
-              DO 60 J = 1,N
-                  IF (X(J).NE.ZERO) THEN
-                      TEMP = ALPHA*X(J)
-                      K = KK
-                      DO 50 I = J,N
-                          AP(K) = AP(K) + X(I)*TEMP
-                          K = K + 1
-   50                 CONTINUE
-                  END IF
-                  KK = KK + N - J + 1
-   60         CONTINUE
-          ELSE
-              JX = KX
-              DO 80 J = 1,N
-                  IF (X(JX).NE.ZERO) THEN
-                      TEMP = ALPHA*X(JX)
-                      IX = JX
-                      DO 70 K = KK,KK + N - J
-                          AP(K) = AP(K) + X(IX)*TEMP
-                          IX = IX + INCX
-   70                 CONTINUE
-                  END IF
-                  JX = JX + INCX
-                  KK = KK + N - J + 1
-   80         CONTINUE
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of DSPR  .
-*
-      END
diff --git a/blas/dspr2.f b/blas/dspr2.f
deleted file mode 100644
index 6f6b54a..0000000
--- a/blas/dspr2.f
+++ /dev/null
@@ -1,233 +0,0 @@
-      SUBROUTINE DSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
-*     .. Scalar Arguments ..
-      DOUBLE PRECISION ALPHA
-      INTEGER INCX,INCY,N
-      CHARACTER UPLO
-*     ..
-*     .. Array Arguments ..
-      DOUBLE PRECISION AP(*),X(*),Y(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  DSPR2  performs the symmetric rank 2 operation
-*
-*     A := alpha*x*y' + alpha*y*x' + A,
-*
-*  where alpha is a scalar, x and y are n element vectors and A is an
-*  n by n symmetric matrix, supplied in packed form.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the upper or lower
-*           triangular part of the matrix A is supplied in the packed
-*           array AP as follows:
-*
-*              UPLO = 'U' or 'u'   The upper triangular part of A is
-*                                  supplied in AP.
-*
-*              UPLO = 'L' or 'l'   The lower triangular part of A is
-*                                  supplied in AP.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  ALPHA  - DOUBLE PRECISION.
-*           On entry, ALPHA specifies the scalar alpha.
-*           Unchanged on exit.
-*
-*  X      - DOUBLE PRECISION array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element vector x.
-*           Unchanged on exit.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  Y      - DOUBLE PRECISION array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCY ) ).
-*           Before entry, the incremented array Y must contain the n
-*           element vector y.
-*           Unchanged on exit.
-*
-*  INCY   - INTEGER.
-*           On entry, INCY specifies the increment for the elements of
-*           Y. INCY must not be zero.
-*           Unchanged on exit.
-*
-*  AP     - DOUBLE PRECISION array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular part of the symmetric matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
-*           and a( 2, 2 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the upper triangular part of the
-*           updated matrix.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular part of the symmetric matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
-*           and a( 3, 1 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the lower triangular part of the
-*           updated matrix.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      DOUBLE PRECISION ZERO
-      PARAMETER (ZERO=0.0D+0)
-*     ..
-*     .. Local Scalars ..
-      DOUBLE PRECISION TEMP1,TEMP2
-      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (N.LT.0) THEN
-          INFO = 2
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 5
-      ELSE IF (INCY.EQ.0) THEN
-          INFO = 7
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('DSPR2 ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
-*
-*     Set up the start points in X and Y if the increments are not both
-*     unity.
-*
-      IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
-          IF (INCX.GT.0) THEN
-              KX = 1
-          ELSE
-              KX = 1 - (N-1)*INCX
-          END IF
-          IF (INCY.GT.0) THEN
-              KY = 1
-          ELSE
-              KY = 1 - (N-1)*INCY
-          END IF
-          JX = KX
-          JY = KY
-      END IF
-*
-*     Start the operations. In this version the elements of the array AP
-*     are accessed sequentially with one pass through AP.
-*
-      KK = 1
-      IF (LSAME(UPLO,'U')) THEN
-*
-*        Form  A  when upper triangle is stored in AP.
-*
-          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
-              DO 20 J = 1,N
-                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*Y(J)
-                      TEMP2 = ALPHA*X(J)
-                      K = KK
-                      DO 10 I = 1,J
-                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
-                          K = K + 1
-   10                 CONTINUE
-                  END IF
-                  KK = KK + J
-   20         CONTINUE
-          ELSE
-              DO 40 J = 1,N
-                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*Y(JY)
-                      TEMP2 = ALPHA*X(JX)
-                      IX = KX
-                      IY = KY
-                      DO 30 K = KK,KK + J - 1
-                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
-                          IX = IX + INCX
-                          IY = IY + INCY
-   30                 CONTINUE
-                  END IF
-                  JX = JX + INCX
-                  JY = JY + INCY
-                  KK = KK + J
-   40         CONTINUE
-          END IF
-      ELSE
-*
-*        Form  A  when lower triangle is stored in AP.
-*
-          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
-              DO 60 J = 1,N
-                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*Y(J)
-                      TEMP2 = ALPHA*X(J)
-                      K = KK
-                      DO 50 I = J,N
-                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
-                          K = K + 1
-   50                 CONTINUE
-                  END IF
-                  KK = KK + N - J + 1
-   60         CONTINUE
-          ELSE
-              DO 80 J = 1,N
-                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*Y(JY)
-                      TEMP2 = ALPHA*X(JX)
-                      IX = JX
-                      IY = JY
-                      DO 70 K = KK,KK + N - J
-                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
-                          IX = IX + INCX
-                          IY = IY + INCY
-   70                 CONTINUE
-                  END IF
-                  JX = JX + INCX
-                  JY = JY + INCY
-                  KK = KK + N - J + 1
-   80         CONTINUE
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of DSPR2 .
-*
-      END
diff --git a/blas/dtpmv.f b/blas/dtpmv.f
deleted file mode 100644
index c5bc112..0000000
--- a/blas/dtpmv.f
+++ /dev/null
@@ -1,293 +0,0 @@
-      SUBROUTINE DTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
-*     .. Scalar Arguments ..
-      INTEGER INCX,N
-      CHARACTER DIAG,TRANS,UPLO
-*     ..
-*     .. Array Arguments ..
-      DOUBLE PRECISION AP(*),X(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  DTPMV  performs one of the matrix-vector operations
-*
-*     x := A*x,   or   x := A'*x,
-*
-*  where x is an n element vector and  A is an n by n unit, or non-unit,
-*  upper or lower triangular matrix, supplied in packed form.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the matrix is an upper or
-*           lower triangular matrix as follows:
-*
-*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
-*
-*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
-*
-*           Unchanged on exit.
-*
-*  TRANS  - CHARACTER*1.
-*           On entry, TRANS specifies the operation to be performed as
-*           follows:
-*
-*              TRANS = 'N' or 'n'   x := A*x.
-*
-*              TRANS = 'T' or 't'   x := A'*x.
-*
-*              TRANS = 'C' or 'c'   x := A'*x.
-*
-*           Unchanged on exit.
-*
-*  DIAG   - CHARACTER*1.
-*           On entry, DIAG specifies whether or not A is unit
-*           triangular as follows:
-*
-*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
-*
-*              DIAG = 'N' or 'n'   A is not assumed to be unit
-*                                  triangular.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  AP     - DOUBLE PRECISION array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
-*           respectively, and so on.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
-*           respectively, and so on.
-*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
-*           A are not referenced, but are assumed to be unity.
-*           Unchanged on exit.
-*
-*  X      - DOUBLE PRECISION array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element vector x. On exit, X is overwritten with the
-*           tranformed vector x.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      DOUBLE PRECISION ZERO
-      PARAMETER (ZERO=0.0D+0)
-*     ..
-*     .. Local Scalars ..
-      DOUBLE PRECISION TEMP
-      INTEGER I,INFO,IX,J,JX,K,KK,KX
-      LOGICAL NOUNIT
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
-     +         .NOT.LSAME(TRANS,'C')) THEN
-          INFO = 2
-      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
-          INFO = 3
-      ELSE IF (N.LT.0) THEN
-          INFO = 4
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 7
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('DTPMV ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF (N.EQ.0) RETURN
-*
-      NOUNIT = LSAME(DIAG,'N')
-*
-*     Set up the start point in X if the increment is not unity. This
-*     will be  ( N - 1 )*INCX  too small for descending loops.
-*
-      IF (INCX.LE.0) THEN
-          KX = 1 - (N-1)*INCX
-      ELSE IF (INCX.NE.1) THEN
-          KX = 1
-      END IF
-*
-*     Start the operations. In this version the elements of AP are
-*     accessed sequentially with one pass through AP.
-*
-      IF (LSAME(TRANS,'N')) THEN
-*
-*        Form  x:= A*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 20 J = 1,N
-                      IF (X(J).NE.ZERO) THEN
-                          TEMP = X(J)
-                          K = KK
-                          DO 10 I = 1,J - 1
-                              X(I) = X(I) + TEMP*AP(K)
-                              K = K + 1
-   10                     CONTINUE
-                          IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
-                      END IF
-                      KK = KK + J
-   20             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 40 J = 1,N
-                      IF (X(JX).NE.ZERO) THEN
-                          TEMP = X(JX)
-                          IX = KX
-                          DO 30 K = KK,KK + J - 2
-                              X(IX) = X(IX) + TEMP*AP(K)
-                              IX = IX + INCX
-   30                     CONTINUE
-                          IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
-                      END IF
-                      JX = JX + INCX
-                      KK = KK + J
-   40             CONTINUE
-              END IF
-          ELSE
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 60 J = N,1,-1
-                      IF (X(J).NE.ZERO) THEN
-                          TEMP = X(J)
-                          K = KK
-                          DO 50 I = N,J + 1,-1
-                              X(I) = X(I) + TEMP*AP(K)
-                              K = K - 1
-   50                     CONTINUE
-                          IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
-                      END IF
-                      KK = KK - (N-J+1)
-   60             CONTINUE
-              ELSE
-                  KX = KX + (N-1)*INCX
-                  JX = KX
-                  DO 80 J = N,1,-1
-                      IF (X(JX).NE.ZERO) THEN
-                          TEMP = X(JX)
-                          IX = KX
-                          DO 70 K = KK,KK - (N- (J+1)),-1
-                              X(IX) = X(IX) + TEMP*AP(K)
-                              IX = IX - INCX
-   70                     CONTINUE
-                          IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
-                      END IF
-                      JX = JX - INCX
-                      KK = KK - (N-J+1)
-   80             CONTINUE
-              END IF
-          END IF
-      ELSE
-*
-*        Form  x := A'*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 100 J = N,1,-1
-                      TEMP = X(J)
-                      IF (NOUNIT) TEMP = TEMP*AP(KK)
-                      K = KK - 1
-                      DO 90 I = J - 1,1,-1
-                          TEMP = TEMP + AP(K)*X(I)
-                          K = K - 1
-   90                 CONTINUE
-                      X(J) = TEMP
-                      KK = KK - J
-  100             CONTINUE
-              ELSE
-                  JX = KX + (N-1)*INCX
-                  DO 120 J = N,1,-1
-                      TEMP = X(JX)
-                      IX = JX
-                      IF (NOUNIT) TEMP = TEMP*AP(KK)
-                      DO 110 K = KK - 1,KK - J + 1,-1
-                          IX = IX - INCX
-                          TEMP = TEMP + AP(K)*X(IX)
-  110                 CONTINUE
-                      X(JX) = TEMP
-                      JX = JX - INCX
-                      KK = KK - J
-  120             CONTINUE
-              END IF
-          ELSE
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 140 J = 1,N
-                      TEMP = X(J)
-                      IF (NOUNIT) TEMP = TEMP*AP(KK)
-                      K = KK + 1
-                      DO 130 I = J + 1,N
-                          TEMP = TEMP + AP(K)*X(I)
-                          K = K + 1
-  130                 CONTINUE
-                      X(J) = TEMP
-                      KK = KK + (N-J+1)
-  140             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 160 J = 1,N
-                      TEMP = X(JX)
-                      IX = JX
-                      IF (NOUNIT) TEMP = TEMP*AP(KK)
-                      DO 150 K = KK + 1,KK + N - J
-                          IX = IX + INCX
-                          TEMP = TEMP + AP(K)*X(IX)
-  150                 CONTINUE
-                      X(JX) = TEMP
-                      JX = JX + INCX
-                      KK = KK + (N-J+1)
-  160             CONTINUE
-              END IF
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of DTPMV .
-*
-      END
diff --git a/blas/dtpsv.f b/blas/dtpsv.f
deleted file mode 100644
index c7e58d3..0000000
--- a/blas/dtpsv.f
+++ /dev/null
@@ -1,296 +0,0 @@
-      SUBROUTINE DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
-*     .. Scalar Arguments ..
-      INTEGER INCX,N
-      CHARACTER DIAG,TRANS,UPLO
-*     ..
-*     .. Array Arguments ..
-      DOUBLE PRECISION AP(*),X(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  DTPSV  solves one of the systems of equations
-*
-*     A*x = b,   or   A'*x = b,
-*
-*  where b and x are n element vectors and A is an n by n unit, or
-*  non-unit, upper or lower triangular matrix, supplied in packed form.
-*
-*  No test for singularity or near-singularity is included in this
-*  routine. Such tests must be performed before calling this routine.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the matrix is an upper or
-*           lower triangular matrix as follows:
-*
-*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
-*
-*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
-*
-*           Unchanged on exit.
-*
-*  TRANS  - CHARACTER*1.
-*           On entry, TRANS specifies the equations to be solved as
-*           follows:
-*
-*              TRANS = 'N' or 'n'   A*x = b.
-*
-*              TRANS = 'T' or 't'   A'*x = b.
-*
-*              TRANS = 'C' or 'c'   A'*x = b.
-*
-*           Unchanged on exit.
-*
-*  DIAG   - CHARACTER*1.
-*           On entry, DIAG specifies whether or not A is unit
-*           triangular as follows:
-*
-*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
-*
-*              DIAG = 'N' or 'n'   A is not assumed to be unit
-*                                  triangular.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  AP     - DOUBLE PRECISION array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
-*           respectively, and so on.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
-*           respectively, and so on.
-*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
-*           A are not referenced, but are assumed to be unity.
-*           Unchanged on exit.
-*
-*  X      - DOUBLE PRECISION array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element right-hand side vector b. On exit, X is overwritten
-*           with the solution vector x.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      DOUBLE PRECISION ZERO
-      PARAMETER (ZERO=0.0D+0)
-*     ..
-*     .. Local Scalars ..
-      DOUBLE PRECISION TEMP
-      INTEGER I,INFO,IX,J,JX,K,KK,KX
-      LOGICAL NOUNIT
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
-     +         .NOT.LSAME(TRANS,'C')) THEN
-          INFO = 2
-      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
-          INFO = 3
-      ELSE IF (N.LT.0) THEN
-          INFO = 4
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 7
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('DTPSV ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF (N.EQ.0) RETURN
-*
-      NOUNIT = LSAME(DIAG,'N')
-*
-*     Set up the start point in X if the increment is not unity. This
-*     will be  ( N - 1 )*INCX  too small for descending loops.
-*
-      IF (INCX.LE.0) THEN
-          KX = 1 - (N-1)*INCX
-      ELSE IF (INCX.NE.1) THEN
-          KX = 1
-      END IF
-*
-*     Start the operations. In this version the elements of AP are
-*     accessed sequentially with one pass through AP.
-*
-      IF (LSAME(TRANS,'N')) THEN
-*
-*        Form  x := inv( A )*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 20 J = N,1,-1
-                      IF (X(J).NE.ZERO) THEN
-                          IF (NOUNIT) X(J) = X(J)/AP(KK)
-                          TEMP = X(J)
-                          K = KK - 1
-                          DO 10 I = J - 1,1,-1
-                              X(I) = X(I) - TEMP*AP(K)
-                              K = K - 1
-   10                     CONTINUE
-                      END IF
-                      KK = KK - J
-   20             CONTINUE
-              ELSE
-                  JX = KX + (N-1)*INCX
-                  DO 40 J = N,1,-1
-                      IF (X(JX).NE.ZERO) THEN
-                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
-                          TEMP = X(JX)
-                          IX = JX
-                          DO 30 K = KK - 1,KK - J + 1,-1
-                              IX = IX - INCX
-                              X(IX) = X(IX) - TEMP*AP(K)
-   30                     CONTINUE
-                      END IF
-                      JX = JX - INCX
-                      KK = KK - J
-   40             CONTINUE
-              END IF
-          ELSE
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 60 J = 1,N
-                      IF (X(J).NE.ZERO) THEN
-                          IF (NOUNIT) X(J) = X(J)/AP(KK)
-                          TEMP = X(J)
-                          K = KK + 1
-                          DO 50 I = J + 1,N
-                              X(I) = X(I) - TEMP*AP(K)
-                              K = K + 1
-   50                     CONTINUE
-                      END IF
-                      KK = KK + (N-J+1)
-   60             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 80 J = 1,N
-                      IF (X(JX).NE.ZERO) THEN
-                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
-                          TEMP = X(JX)
-                          IX = JX
-                          DO 70 K = KK + 1,KK + N - J
-                              IX = IX + INCX
-                              X(IX) = X(IX) - TEMP*AP(K)
-   70                     CONTINUE
-                      END IF
-                      JX = JX + INCX
-                      KK = KK + (N-J+1)
-   80             CONTINUE
-              END IF
-          END IF
-      ELSE
-*
-*        Form  x := inv( A' )*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 100 J = 1,N
-                      TEMP = X(J)
-                      K = KK
-                      DO 90 I = 1,J - 1
-                          TEMP = TEMP - AP(K)*X(I)
-                          K = K + 1
-   90                 CONTINUE
-                      IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
-                      X(J) = TEMP
-                      KK = KK + J
-  100             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 120 J = 1,N
-                      TEMP = X(JX)
-                      IX = KX
-                      DO 110 K = KK,KK + J - 2
-                          TEMP = TEMP - AP(K)*X(IX)
-                          IX = IX + INCX
-  110                 CONTINUE
-                      IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
-                      X(JX) = TEMP
-                      JX = JX + INCX
-                      KK = KK + J
-  120             CONTINUE
-              END IF
-          ELSE
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 140 J = N,1,-1
-                      TEMP = X(J)
-                      K = KK
-                      DO 130 I = N,J + 1,-1
-                          TEMP = TEMP - AP(K)*X(I)
-                          K = K - 1
-  130                 CONTINUE
-                      IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
-                      X(J) = TEMP
-                      KK = KK - (N-J+1)
-  140             CONTINUE
-              ELSE
-                  KX = KX + (N-1)*INCX
-                  JX = KX
-                  DO 160 J = N,1,-1
-                      TEMP = X(JX)
-                      IX = KX
-                      DO 150 K = KK,KK - (N- (J+1)),-1
-                          TEMP = TEMP - AP(K)*X(IX)
-                          IX = IX - INCX
-  150                 CONTINUE
-                      IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
-                      X(JX) = TEMP
-                      JX = JX - INCX
-                      KK = KK - (N-J+1)
-  160             CONTINUE
-              END IF
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of DTPSV .
-*
-      END
diff --git a/blas/level2_cplx_impl.h b/blas/level2_cplx_impl.h
index 477f6d6..f52d384 100644
--- a/blas/level2_cplx_impl.h
+++ b/blas/level2_cplx_impl.h
@@ -18,6 +18,21 @@
   */
 int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
 {
+  typedef void (*functype)(int, const Scalar*, int, const Scalar*, int, Scalar*, Scalar);
+  static functype func[2];
+
+  static bool init = false;
+  if(!init)
+  {
+    for(int k=0; k<2; ++k)
+      func[k] = 0;
+
+    func[UP] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run);
+    func[LO] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run);
+
+    init = true;
+  }
+
   Scalar* a = reinterpret_cast<Scalar*>(pa);
   Scalar* x = reinterpret_cast<Scalar*>(px);
   Scalar* y = reinterpret_cast<Scalar*>(py);
@@ -48,9 +63,11 @@
 
   if(alpha!=Scalar(0))
   {
-    // TODO performs a direct call to the underlying implementation function
-         if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n));
-    else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n));
+    int code = UPLO(*uplo);
+    if(code>=2 || func[code]==0)
+      return 0;
+
+    func[code](*n, a, *lda, actual_x, 1, actual_y, alpha);
   }
 
   if(actual_x!=x) delete[] actual_x;
@@ -91,10 +108,49 @@
   *  where alpha is a real scalar, x is an n element vector and A is an
   *  n by n hermitian matrix, supplied in packed form.
   */
-// int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *ap)
-// {
-//   return 1;
-// }
+int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap)
+{
+  typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar);
+  static functype func[2];
+
+  static bool init = false;
+  if(!init)
+  {
+    for(int k=0; k<2; ++k)
+      func[k] = 0;
+
+    func[UP] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run);
+    func[LO] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run);
+
+    init = true;
+  }
+
+  Scalar* x = reinterpret_cast<Scalar*>(px);
+  Scalar* ap = reinterpret_cast<Scalar*>(pap);
+  RealScalar alpha = *palpha;
+
+  int info = 0;
+  if(UPLO(*uplo)==INVALID)                                            info = 1;
+  else if(*n<0)                                                       info = 2;
+  else if(*incx==0)                                                   info = 5;
+  if(info)
+    return xerbla_(SCALAR_SUFFIX_UP"HPR  ",&info,6);
+
+  if(alpha==Scalar(0))
+    return 1;
+
+  Scalar* x_cpy = get_compact_vector(x, *n, *incx);
+
+  int code = UPLO(*uplo);
+  if(code>=2 || func[code]==0)
+    return 0;
+
+  func[code](*n, ap, x_cpy, alpha);
+
+  if(x_cpy!=x)  delete[] x_cpy;
+
+  return 1;
+}
 
 /**  ZHPR2  performs the hermitian rank 2 operation
   *
@@ -103,10 +159,53 @@
   *  where alpha is a scalar, x and y are n element vectors and A is an
   *  n by n hermitian matrix, supplied in packed form.
   */
-// int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
-// {
-//   return 1;
-// }
+int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap)
+{
+  typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar);
+  static functype func[2];
+
+  static bool init = false;
+  if(!init)
+  {
+    for(int k=0; k<2; ++k)
+      func[k] = 0;
+
+    func[UP] = (internal::packed_rank2_update_selector<Scalar,int,Upper>::run);
+    func[LO] = (internal::packed_rank2_update_selector<Scalar,int,Lower>::run);
+
+    init = true;
+  }
+
+  Scalar* x = reinterpret_cast<Scalar*>(px);
+  Scalar* y = reinterpret_cast<Scalar*>(py);
+  Scalar* ap = reinterpret_cast<Scalar*>(pap);
+  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
+
+  int info = 0;
+  if(UPLO(*uplo)==INVALID)                                            info = 1;
+  else if(*n<0)                                                       info = 2;
+  else if(*incx==0)                                                   info = 5;
+  else if(*incy==0)                                                   info = 7;
+  if(info)
+    return xerbla_(SCALAR_SUFFIX_UP"HPR2 ",&info,6);
+
+  if(alpha==Scalar(0))
+    return 1;
+
+  Scalar* x_cpy = get_compact_vector(x, *n, *incx);
+  Scalar* y_cpy = get_compact_vector(y, *n, *incy);
+
+  int code = UPLO(*uplo);
+  if(code>=2 || func[code]==0)
+    return 0;
+
+  func[code](*n, ap, x_cpy, y_cpy, alpha);
+
+  if(x_cpy!=x)  delete[] x_cpy;
+  if(y_cpy!=y)  delete[] y_cpy;
+
+  return 1;
+}
 
 /**  ZHER   performs the hermitian rank 1 operation
   *
@@ -249,7 +348,7 @@
   Scalar* x_cpy = get_compact_vector(x,*m,*incx);
   Scalar* y_cpy = get_compact_vector(y,*n,*incy);
 
-  internal::general_rank1_update<Scalar,int,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
+  internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
 
   if(x_cpy!=x)  delete[] x_cpy;
   if(y_cpy!=y)  delete[] y_cpy;
@@ -286,7 +385,7 @@
   Scalar* x_cpy = get_compact_vector(x,*m,*incx);
   Scalar* y_cpy = get_compact_vector(y,*n,*incy);
 
-  internal::general_rank1_update<Scalar,int,Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
+  internal::general_rank1_update<Scalar,int,ColMajor,false,Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
 
   if(x_cpy!=x)  delete[] x_cpy;
   if(y_cpy!=y)  delete[] y_cpy;
diff --git a/blas/level2_impl.h b/blas/level2_impl.h
index f1f7371..bd41f7e 100644
--- a/blas/level2_impl.h
+++ b/blas/level2_impl.h
@@ -187,7 +187,7 @@
   copy_back(res.data(),b,*n,*incb);
   if(actual_b!=b) delete[] actual_b;
 
-  return 0;
+  return 1;
 }
 
 /**  GBMV  performs one of the matrix-vector operations
@@ -399,10 +399,66 @@
   *  where x is an n element vector and  A is an n by n unit, or non-unit,
   *  upper or lower triangular matrix, supplied in packed form.
   */
-// int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
-// {
-//   return 1;
-// }
+int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx)
+{
+  typedef void (*functype)(int, const Scalar*, const Scalar*, Scalar*, Scalar);
+  static functype func[16];
+
+  static bool init = false;
+  if(!init)
+  {
+    for(int k=0; k<16; ++k)
+      func[k] = 0;
+
+    func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0,       Scalar,false,Scalar,false,ColMajor>::run);
+    func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0,       Scalar,false,Scalar,false,RowMajor>::run);
+    func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0,       Scalar,Conj, Scalar,false,RowMajor>::run);
+
+    func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0,       Scalar,false,Scalar,false,ColMajor>::run);
+    func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0,       Scalar,false,Scalar,false,RowMajor>::run);
+    func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0,       Scalar,Conj, Scalar,false,RowMajor>::run);
+
+    func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run);
+    func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run);
+    func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
+
+    func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run);
+    func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run);
+    func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
+
+    init = true;
+  }
+
+  Scalar* ap = reinterpret_cast<Scalar*>(pap);
+  Scalar* x = reinterpret_cast<Scalar*>(px);
+
+  int info = 0;
+  if(UPLO(*uplo)==INVALID)                                            info = 1;
+  else if(OP(*opa)==INVALID)                                          info = 2;
+  else if(DIAG(*diag)==INVALID)                                       info = 3;
+  else if(*n<0)                                                       info = 4;
+  else if(*incx==0)                                                   info = 7;
+  if(info)
+    return xerbla_(SCALAR_SUFFIX_UP"TPMV ",&info,6);
+
+  if(*n==0)
+    return 1;
+
+  Scalar* actual_x = get_compact_vector(x,*n,*incx);
+  Matrix<Scalar,Dynamic,1> res(*n);
+  res.setZero();
+
+  int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
+  if(code>=16 || func[code]==0)
+    return 0;
+
+  func[code](*n, ap, actual_x, res.data(), Scalar(1));
+
+  copy_back(res.data(),x,*n,*incx);
+  if(actual_x!=x) delete[] actual_x;
+
+  return 1;
+}
 
 /**  DTPSV  solves one of the systems of equations
   *
@@ -414,8 +470,55 @@
   *  No test for singularity or near-singularity is included in this
   *  routine. Such tests must be performed before calling this routine.
   */
-// int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
-// {
-//   return 1;
-// }
+int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx)
+{
+  typedef void (*functype)(int, const Scalar*, Scalar*);
+  static functype func[16];
+
+  static bool init = false;
+  if(!init)
+  {
+    for(int k=0; k<16; ++k)
+      func[k] = 0;
+
+    func[NOTR  | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       false,ColMajor>::run);
+    func[TR    | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       false,RowMajor>::run);
+    func[ADJ   | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       Conj, RowMajor>::run);
+
+    func[NOTR  | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0,       false,ColMajor>::run);
+    func[TR    | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       false,RowMajor>::run);
+    func[ADJ   | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0,       Conj, RowMajor>::run);
+
+    func[NOTR  | (UP << 2) | (UNIT  << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run);
+    func[TR    | (UP << 2) | (UNIT  << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run);
+    func[ADJ   | (UP << 2) | (UNIT  << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run);
+
+    func[NOTR  | (LO << 2) | (UNIT  << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run);
+    func[TR    | (LO << 2) | (UNIT  << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run);
+    func[ADJ   | (LO << 2) | (UNIT  << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run);
+
+    init = true;
+  }
+
+  Scalar* ap = reinterpret_cast<Scalar*>(pap);
+  Scalar* x = reinterpret_cast<Scalar*>(px);
+
+  int info = 0;
+  if(UPLO(*uplo)==INVALID)                                            info = 1;
+  else if(OP(*opa)==INVALID)                                          info = 2;
+  else if(DIAG(*diag)==INVALID)                                       info = 3;
+  else if(*n<0)                                                       info = 4;
+  else if(*incx==0)                                                   info = 7;
+  if(info)
+    return xerbla_(SCALAR_SUFFIX_UP"TPSV ",&info,6);
+
+  Scalar* actual_x = get_compact_vector(x,*n,*incx);
+
+  int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
+  func[code](*n, ap, actual_x);
+
+  if(actual_x!=x) delete[] copy_back(actual_x,x,*n,*incx);
+
+  return 1;
+}
 
diff --git a/blas/level2_real_impl.h b/blas/level2_real_impl.h
index 06da283..febf08d 100644
--- a/blas/level2_real_impl.h
+++ b/blas/level2_real_impl.h
@@ -12,6 +12,21 @@
 // y = alpha*A*x + beta*y
 int EIGEN_BLAS_FUNC(symv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
 {
+  typedef void (*functype)(int, const Scalar*, int, const Scalar*, int, Scalar*, Scalar);
+  static functype func[2];
+
+  static bool init = false;
+  if(!init)
+  {
+    for(int k=0; k<2; ++k)
+      func[k] = 0;
+
+    func[UP] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run);
+    func[LO] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run);
+
+    init = true;
+  }
+
   Scalar* a = reinterpret_cast<Scalar*>(pa);
   Scalar* x = reinterpret_cast<Scalar*>(px);
   Scalar* y = reinterpret_cast<Scalar*>(py);
@@ -40,9 +55,11 @@
     else                vector(actual_y, *n) *= beta;
   }
 
-  // TODO performs a direct call to the underlying implementation function
-       if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n));
-  else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n));
+  int code = UPLO(*uplo);
+  if(code>=2 || func[code]==0)
+    return 0;
+
+  func[code](*n, a, *lda, actual_x, 1, actual_y, alpha);
 
   if(actual_x!=x) delete[] actual_x;
   if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
@@ -214,10 +231,49 @@
   *  where alpha is a real scalar, x is an n element vector and A is an
   *  n by n symmetric matrix, supplied in packed form.
   */
-// int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *alpha, Scalar *x, int *incx, Scalar *ap)
-// {
-//   return 1;
-// }
+int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *pap)
+{
+  typedef void (*functype)(int, Scalar*, const Scalar*, Scalar);
+  static functype func[2];
+
+  static bool init = false;
+  if(!init)
+  {
+    for(int k=0; k<2; ++k)
+      func[k] = 0;
+
+    func[UP] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,false>::run);
+    func[LO] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,false>::run);
+
+    init = true;
+  }
+
+  Scalar* x = reinterpret_cast<Scalar*>(px);
+  Scalar* ap = reinterpret_cast<Scalar*>(pap);
+  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
+
+  int info = 0;
+  if(UPLO(*uplo)==INVALID)                                            info = 1;
+  else if(*n<0)                                                       info = 2;
+  else if(*incx==0)                                                   info = 5;
+  if(info)
+    return xerbla_(SCALAR_SUFFIX_UP"SPR  ",&info,6);
+
+  if(alpha==Scalar(0))
+    return 1;
+
+  Scalar* x_cpy = get_compact_vector(x, *n, *incx);
+
+  int code = UPLO(*uplo);
+  if(code>=2 || func[code]==0)
+    return 0;
+
+  func[code](*n, ap, x_cpy, alpha);
+
+  if(x_cpy!=x)  delete[] x_cpy;
+
+  return 1;
+}
 
 /**  DSPR2  performs the symmetric rank 2 operation
   *
@@ -226,10 +282,53 @@
   *  where alpha is a scalar, x and y are n element vectors and A is an
   *  n by n symmetric matrix, supplied in packed form.
   */
-// int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
-// {
-//   return 1;
-// }
+int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap)
+{
+  typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar);
+  static functype func[2];
+
+  static bool init = false;
+  if(!init)
+  {
+    for(int k=0; k<2; ++k)
+      func[k] = 0;
+
+    func[UP] = (internal::packed_rank2_update_selector<Scalar,int,Upper>::run);
+    func[LO] = (internal::packed_rank2_update_selector<Scalar,int,Lower>::run);
+
+    init = true;
+  }
+
+  Scalar* x = reinterpret_cast<Scalar*>(px);
+  Scalar* y = reinterpret_cast<Scalar*>(py);
+  Scalar* ap = reinterpret_cast<Scalar*>(pap);
+  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
+
+  int info = 0;
+  if(UPLO(*uplo)==INVALID)                                            info = 1;
+  else if(*n<0)                                                       info = 2;
+  else if(*incx==0)                                                   info = 5;
+  else if(*incy==0)                                                   info = 7;
+  if(info)
+    return xerbla_(SCALAR_SUFFIX_UP"SPR2 ",&info,6);
+
+  if(alpha==Scalar(0))
+    return 1;
+
+  Scalar* x_cpy = get_compact_vector(x, *n, *incx);
+  Scalar* y_cpy = get_compact_vector(y, *n, *incy);
+
+  int code = UPLO(*uplo);
+  if(code>=2 || func[code]==0)
+    return 0;
+
+  func[code](*n, ap, x_cpy, y_cpy, alpha);
+
+  if(x_cpy!=x)  delete[] x_cpy;
+  if(y_cpy!=y)  delete[] y_cpy;
+
+  return 1;
+}
 
 /**  DGER   performs the rank 1 operation
   *
@@ -260,7 +359,7 @@
   Scalar* x_cpy = get_compact_vector(x,*m,*incx);
   Scalar* y_cpy = get_compact_vector(y,*n,*incy);
 
-  internal::general_rank1_update<Scalar,int,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
+  internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
 
   if(x_cpy!=x)  delete[] x_cpy;
   if(y_cpy!=y)  delete[] y_cpy;
diff --git a/blas/sspr.f b/blas/sspr.f
deleted file mode 100644
index bae9261..0000000
--- a/blas/sspr.f
+++ /dev/null
@@ -1,202 +0,0 @@
-      SUBROUTINE SSPR(UPLO,N,ALPHA,X,INCX,AP)
-*     .. Scalar Arguments ..
-      REAL ALPHA
-      INTEGER INCX,N
-      CHARACTER UPLO
-*     ..
-*     .. Array Arguments ..
-      REAL AP(*),X(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  SSPR    performs the symmetric rank 1 operation
-*
-*     A := alpha*x*x' + A,
-*
-*  where alpha is a real scalar, x is an n element vector and A is an
-*  n by n symmetric matrix, supplied in packed form.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the upper or lower
-*           triangular part of the matrix A is supplied in the packed
-*           array AP as follows:
-*
-*              UPLO = 'U' or 'u'   The upper triangular part of A is
-*                                  supplied in AP.
-*
-*              UPLO = 'L' or 'l'   The lower triangular part of A is
-*                                  supplied in AP.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  ALPHA  - REAL            .
-*           On entry, ALPHA specifies the scalar alpha.
-*           Unchanged on exit.
-*
-*  X      - REAL             array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element vector x.
-*           Unchanged on exit.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  AP     - REAL             array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular part of the symmetric matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
-*           and a( 2, 2 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the upper triangular part of the
-*           updated matrix.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular part of the symmetric matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
-*           and a( 3, 1 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the lower triangular part of the
-*           updated matrix.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      REAL ZERO
-      PARAMETER (ZERO=0.0E+0)
-*     ..
-*     .. Local Scalars ..
-      REAL TEMP
-      INTEGER I,INFO,IX,J,JX,K,KK,KX
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (N.LT.0) THEN
-          INFO = 2
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 5
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('SSPR  ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
-*
-*     Set the start point in X if the increment is not unity.
-*
-      IF (INCX.LE.0) THEN
-          KX = 1 - (N-1)*INCX
-      ELSE IF (INCX.NE.1) THEN
-          KX = 1
-      END IF
-*
-*     Start the operations. In this version the elements of the array AP
-*     are accessed sequentially with one pass through AP.
-*
-      KK = 1
-      IF (LSAME(UPLO,'U')) THEN
-*
-*        Form  A  when upper triangle is stored in AP.
-*
-          IF (INCX.EQ.1) THEN
-              DO 20 J = 1,N
-                  IF (X(J).NE.ZERO) THEN
-                      TEMP = ALPHA*X(J)
-                      K = KK
-                      DO 10 I = 1,J
-                          AP(K) = AP(K) + X(I)*TEMP
-                          K = K + 1
-   10                 CONTINUE
-                  END IF
-                  KK = KK + J
-   20         CONTINUE
-          ELSE
-              JX = KX
-              DO 40 J = 1,N
-                  IF (X(JX).NE.ZERO) THEN
-                      TEMP = ALPHA*X(JX)
-                      IX = KX
-                      DO 30 K = KK,KK + J - 1
-                          AP(K) = AP(K) + X(IX)*TEMP
-                          IX = IX + INCX
-   30                 CONTINUE
-                  END IF
-                  JX = JX + INCX
-                  KK = KK + J
-   40         CONTINUE
-          END IF
-      ELSE
-*
-*        Form  A  when lower triangle is stored in AP.
-*
-          IF (INCX.EQ.1) THEN
-              DO 60 J = 1,N
-                  IF (X(J).NE.ZERO) THEN
-                      TEMP = ALPHA*X(J)
-                      K = KK
-                      DO 50 I = J,N
-                          AP(K) = AP(K) + X(I)*TEMP
-                          K = K + 1
-   50                 CONTINUE
-                  END IF
-                  KK = KK + N - J + 1
-   60         CONTINUE
-          ELSE
-              JX = KX
-              DO 80 J = 1,N
-                  IF (X(JX).NE.ZERO) THEN
-                      TEMP = ALPHA*X(JX)
-                      IX = JX
-                      DO 70 K = KK,KK + N - J
-                          AP(K) = AP(K) + X(IX)*TEMP
-                          IX = IX + INCX
-   70                 CONTINUE
-                  END IF
-                  JX = JX + INCX
-                  KK = KK + N - J + 1
-   80         CONTINUE
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of SSPR  .
-*
-      END
diff --git a/blas/sspr2.f b/blas/sspr2.f
deleted file mode 100644
index cd27c73..0000000
--- a/blas/sspr2.f
+++ /dev/null
@@ -1,233 +0,0 @@
-      SUBROUTINE SSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
-*     .. Scalar Arguments ..
-      REAL ALPHA
-      INTEGER INCX,INCY,N
-      CHARACTER UPLO
-*     ..
-*     .. Array Arguments ..
-      REAL AP(*),X(*),Y(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  SSPR2  performs the symmetric rank 2 operation
-*
-*     A := alpha*x*y' + alpha*y*x' + A,
-*
-*  where alpha is a scalar, x and y are n element vectors and A is an
-*  n by n symmetric matrix, supplied in packed form.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the upper or lower
-*           triangular part of the matrix A is supplied in the packed
-*           array AP as follows:
-*
-*              UPLO = 'U' or 'u'   The upper triangular part of A is
-*                                  supplied in AP.
-*
-*              UPLO = 'L' or 'l'   The lower triangular part of A is
-*                                  supplied in AP.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  ALPHA  - REAL            .
-*           On entry, ALPHA specifies the scalar alpha.
-*           Unchanged on exit.
-*
-*  X      - REAL             array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element vector x.
-*           Unchanged on exit.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  Y      - REAL             array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCY ) ).
-*           Before entry, the incremented array Y must contain the n
-*           element vector y.
-*           Unchanged on exit.
-*
-*  INCY   - INTEGER.
-*           On entry, INCY specifies the increment for the elements of
-*           Y. INCY must not be zero.
-*           Unchanged on exit.
-*
-*  AP     - REAL             array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular part of the symmetric matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
-*           and a( 2, 2 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the upper triangular part of the
-*           updated matrix.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular part of the symmetric matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
-*           and a( 3, 1 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the lower triangular part of the
-*           updated matrix.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      REAL ZERO
-      PARAMETER (ZERO=0.0E+0)
-*     ..
-*     .. Local Scalars ..
-      REAL TEMP1,TEMP2
-      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (N.LT.0) THEN
-          INFO = 2
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 5
-      ELSE IF (INCY.EQ.0) THEN
-          INFO = 7
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('SSPR2 ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
-*
-*     Set up the start points in X and Y if the increments are not both
-*     unity.
-*
-      IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
-          IF (INCX.GT.0) THEN
-              KX = 1
-          ELSE
-              KX = 1 - (N-1)*INCX
-          END IF
-          IF (INCY.GT.0) THEN
-              KY = 1
-          ELSE
-              KY = 1 - (N-1)*INCY
-          END IF
-          JX = KX
-          JY = KY
-      END IF
-*
-*     Start the operations. In this version the elements of the array AP
-*     are accessed sequentially with one pass through AP.
-*
-      KK = 1
-      IF (LSAME(UPLO,'U')) THEN
-*
-*        Form  A  when upper triangle is stored in AP.
-*
-          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
-              DO 20 J = 1,N
-                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*Y(J)
-                      TEMP2 = ALPHA*X(J)
-                      K = KK
-                      DO 10 I = 1,J
-                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
-                          K = K + 1
-   10                 CONTINUE
-                  END IF
-                  KK = KK + J
-   20         CONTINUE
-          ELSE
-              DO 40 J = 1,N
-                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*Y(JY)
-                      TEMP2 = ALPHA*X(JX)
-                      IX = KX
-                      IY = KY
-                      DO 30 K = KK,KK + J - 1
-                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
-                          IX = IX + INCX
-                          IY = IY + INCY
-   30                 CONTINUE
-                  END IF
-                  JX = JX + INCX
-                  JY = JY + INCY
-                  KK = KK + J
-   40         CONTINUE
-          END IF
-      ELSE
-*
-*        Form  A  when lower triangle is stored in AP.
-*
-          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
-              DO 60 J = 1,N
-                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*Y(J)
-                      TEMP2 = ALPHA*X(J)
-                      K = KK
-                      DO 50 I = J,N
-                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
-                          K = K + 1
-   50                 CONTINUE
-                  END IF
-                  KK = KK + N - J + 1
-   60         CONTINUE
-          ELSE
-              DO 80 J = 1,N
-                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*Y(JY)
-                      TEMP2 = ALPHA*X(JX)
-                      IX = JX
-                      IY = JY
-                      DO 70 K = KK,KK + N - J
-                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
-                          IX = IX + INCX
-                          IY = IY + INCY
-   70                 CONTINUE
-                  END IF
-                  JX = JX + INCX
-                  JY = JY + INCY
-                  KK = KK + N - J + 1
-   80         CONTINUE
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of SSPR2 .
-*
-      END
diff --git a/blas/stpmv.f b/blas/stpmv.f
deleted file mode 100644
index 71ea49a..0000000
--- a/blas/stpmv.f
+++ /dev/null
@@ -1,293 +0,0 @@
-      SUBROUTINE STPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
-*     .. Scalar Arguments ..
-      INTEGER INCX,N
-      CHARACTER DIAG,TRANS,UPLO
-*     ..
-*     .. Array Arguments ..
-      REAL AP(*),X(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  STPMV  performs one of the matrix-vector operations
-*
-*     x := A*x,   or   x := A'*x,
-*
-*  where x is an n element vector and  A is an n by n unit, or non-unit,
-*  upper or lower triangular matrix, supplied in packed form.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the matrix is an upper or
-*           lower triangular matrix as follows:
-*
-*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
-*
-*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
-*
-*           Unchanged on exit.
-*
-*  TRANS  - CHARACTER*1.
-*           On entry, TRANS specifies the operation to be performed as
-*           follows:
-*
-*              TRANS = 'N' or 'n'   x := A*x.
-*
-*              TRANS = 'T' or 't'   x := A'*x.
-*
-*              TRANS = 'C' or 'c'   x := A'*x.
-*
-*           Unchanged on exit.
-*
-*  DIAG   - CHARACTER*1.
-*           On entry, DIAG specifies whether or not A is unit
-*           triangular as follows:
-*
-*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
-*
-*              DIAG = 'N' or 'n'   A is not assumed to be unit
-*                                  triangular.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  AP     - REAL             array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
-*           respectively, and so on.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
-*           respectively, and so on.
-*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
-*           A are not referenced, but are assumed to be unity.
-*           Unchanged on exit.
-*
-*  X      - REAL             array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element vector x. On exit, X is overwritten with the
-*           tranformed vector x.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      REAL ZERO
-      PARAMETER (ZERO=0.0E+0)
-*     ..
-*     .. Local Scalars ..
-      REAL TEMP
-      INTEGER I,INFO,IX,J,JX,K,KK,KX
-      LOGICAL NOUNIT
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
-     +         .NOT.LSAME(TRANS,'C')) THEN
-          INFO = 2
-      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
-          INFO = 3
-      ELSE IF (N.LT.0) THEN
-          INFO = 4
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 7
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('STPMV ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF (N.EQ.0) RETURN
-*
-      NOUNIT = LSAME(DIAG,'N')
-*
-*     Set up the start point in X if the increment is not unity. This
-*     will be  ( N - 1 )*INCX  too small for descending loops.
-*
-      IF (INCX.LE.0) THEN
-          KX = 1 - (N-1)*INCX
-      ELSE IF (INCX.NE.1) THEN
-          KX = 1
-      END IF
-*
-*     Start the operations. In this version the elements of AP are
-*     accessed sequentially with one pass through AP.
-*
-      IF (LSAME(TRANS,'N')) THEN
-*
-*        Form  x:= A*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 20 J = 1,N
-                      IF (X(J).NE.ZERO) THEN
-                          TEMP = X(J)
-                          K = KK
-                          DO 10 I = 1,J - 1
-                              X(I) = X(I) + TEMP*AP(K)
-                              K = K + 1
-   10                     CONTINUE
-                          IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
-                      END IF
-                      KK = KK + J
-   20             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 40 J = 1,N
-                      IF (X(JX).NE.ZERO) THEN
-                          TEMP = X(JX)
-                          IX = KX
-                          DO 30 K = KK,KK + J - 2
-                              X(IX) = X(IX) + TEMP*AP(K)
-                              IX = IX + INCX
-   30                     CONTINUE
-                          IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
-                      END IF
-                      JX = JX + INCX
-                      KK = KK + J
-   40             CONTINUE
-              END IF
-          ELSE
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 60 J = N,1,-1
-                      IF (X(J).NE.ZERO) THEN
-                          TEMP = X(J)
-                          K = KK
-                          DO 50 I = N,J + 1,-1
-                              X(I) = X(I) + TEMP*AP(K)
-                              K = K - 1
-   50                     CONTINUE
-                          IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
-                      END IF
-                      KK = KK - (N-J+1)
-   60             CONTINUE
-              ELSE
-                  KX = KX + (N-1)*INCX
-                  JX = KX
-                  DO 80 J = N,1,-1
-                      IF (X(JX).NE.ZERO) THEN
-                          TEMP = X(JX)
-                          IX = KX
-                          DO 70 K = KK,KK - (N- (J+1)),-1
-                              X(IX) = X(IX) + TEMP*AP(K)
-                              IX = IX - INCX
-   70                     CONTINUE
-                          IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
-                      END IF
-                      JX = JX - INCX
-                      KK = KK - (N-J+1)
-   80             CONTINUE
-              END IF
-          END IF
-      ELSE
-*
-*        Form  x := A'*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 100 J = N,1,-1
-                      TEMP = X(J)
-                      IF (NOUNIT) TEMP = TEMP*AP(KK)
-                      K = KK - 1
-                      DO 90 I = J - 1,1,-1
-                          TEMP = TEMP + AP(K)*X(I)
-                          K = K - 1
-   90                 CONTINUE
-                      X(J) = TEMP
-                      KK = KK - J
-  100             CONTINUE
-              ELSE
-                  JX = KX + (N-1)*INCX
-                  DO 120 J = N,1,-1
-                      TEMP = X(JX)
-                      IX = JX
-                      IF (NOUNIT) TEMP = TEMP*AP(KK)
-                      DO 110 K = KK - 1,KK - J + 1,-1
-                          IX = IX - INCX
-                          TEMP = TEMP + AP(K)*X(IX)
-  110                 CONTINUE
-                      X(JX) = TEMP
-                      JX = JX - INCX
-                      KK = KK - J
-  120             CONTINUE
-              END IF
-          ELSE
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 140 J = 1,N
-                      TEMP = X(J)
-                      IF (NOUNIT) TEMP = TEMP*AP(KK)
-                      K = KK + 1
-                      DO 130 I = J + 1,N
-                          TEMP = TEMP + AP(K)*X(I)
-                          K = K + 1
-  130                 CONTINUE
-                      X(J) = TEMP
-                      KK = KK + (N-J+1)
-  140             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 160 J = 1,N
-                      TEMP = X(JX)
-                      IX = JX
-                      IF (NOUNIT) TEMP = TEMP*AP(KK)
-                      DO 150 K = KK + 1,KK + N - J
-                          IX = IX + INCX
-                          TEMP = TEMP + AP(K)*X(IX)
-  150                 CONTINUE
-                      X(JX) = TEMP
-                      JX = JX + INCX
-                      KK = KK + (N-J+1)
-  160             CONTINUE
-              END IF
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of STPMV .
-*
-      END
diff --git a/blas/stpsv.f b/blas/stpsv.f
deleted file mode 100644
index 7d95efb..0000000
--- a/blas/stpsv.f
+++ /dev/null
@@ -1,296 +0,0 @@
-      SUBROUTINE STPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
-*     .. Scalar Arguments ..
-      INTEGER INCX,N
-      CHARACTER DIAG,TRANS,UPLO
-*     ..
-*     .. Array Arguments ..
-      REAL AP(*),X(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  STPSV  solves one of the systems of equations
-*
-*     A*x = b,   or   A'*x = b,
-*
-*  where b and x are n element vectors and A is an n by n unit, or
-*  non-unit, upper or lower triangular matrix, supplied in packed form.
-*
-*  No test for singularity or near-singularity is included in this
-*  routine. Such tests must be performed before calling this routine.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the matrix is an upper or
-*           lower triangular matrix as follows:
-*
-*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
-*
-*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
-*
-*           Unchanged on exit.
-*
-*  TRANS  - CHARACTER*1.
-*           On entry, TRANS specifies the equations to be solved as
-*           follows:
-*
-*              TRANS = 'N' or 'n'   A*x = b.
-*
-*              TRANS = 'T' or 't'   A'*x = b.
-*
-*              TRANS = 'C' or 'c'   A'*x = b.
-*
-*           Unchanged on exit.
-*
-*  DIAG   - CHARACTER*1.
-*           On entry, DIAG specifies whether or not A is unit
-*           triangular as follows:
-*
-*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
-*
-*              DIAG = 'N' or 'n'   A is not assumed to be unit
-*                                  triangular.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  AP     - REAL             array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
-*           respectively, and so on.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
-*           respectively, and so on.
-*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
-*           A are not referenced, but are assumed to be unity.
-*           Unchanged on exit.
-*
-*  X      - REAL             array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element right-hand side vector b. On exit, X is overwritten
-*           with the solution vector x.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      REAL ZERO
-      PARAMETER (ZERO=0.0E+0)
-*     ..
-*     .. Local Scalars ..
-      REAL TEMP
-      INTEGER I,INFO,IX,J,JX,K,KK,KX
-      LOGICAL NOUNIT
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
-     +         .NOT.LSAME(TRANS,'C')) THEN
-          INFO = 2
-      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
-          INFO = 3
-      ELSE IF (N.LT.0) THEN
-          INFO = 4
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 7
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('STPSV ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF (N.EQ.0) RETURN
-*
-      NOUNIT = LSAME(DIAG,'N')
-*
-*     Set up the start point in X if the increment is not unity. This
-*     will be  ( N - 1 )*INCX  too small for descending loops.
-*
-      IF (INCX.LE.0) THEN
-          KX = 1 - (N-1)*INCX
-      ELSE IF (INCX.NE.1) THEN
-          KX = 1
-      END IF
-*
-*     Start the operations. In this version the elements of AP are
-*     accessed sequentially with one pass through AP.
-*
-      IF (LSAME(TRANS,'N')) THEN
-*
-*        Form  x := inv( A )*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 20 J = N,1,-1
-                      IF (X(J).NE.ZERO) THEN
-                          IF (NOUNIT) X(J) = X(J)/AP(KK)
-                          TEMP = X(J)
-                          K = KK - 1
-                          DO 10 I = J - 1,1,-1
-                              X(I) = X(I) - TEMP*AP(K)
-                              K = K - 1
-   10                     CONTINUE
-                      END IF
-                      KK = KK - J
-   20             CONTINUE
-              ELSE
-                  JX = KX + (N-1)*INCX
-                  DO 40 J = N,1,-1
-                      IF (X(JX).NE.ZERO) THEN
-                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
-                          TEMP = X(JX)
-                          IX = JX
-                          DO 30 K = KK - 1,KK - J + 1,-1
-                              IX = IX - INCX
-                              X(IX) = X(IX) - TEMP*AP(K)
-   30                     CONTINUE
-                      END IF
-                      JX = JX - INCX
-                      KK = KK - J
-   40             CONTINUE
-              END IF
-          ELSE
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 60 J = 1,N
-                      IF (X(J).NE.ZERO) THEN
-                          IF (NOUNIT) X(J) = X(J)/AP(KK)
-                          TEMP = X(J)
-                          K = KK + 1
-                          DO 50 I = J + 1,N
-                              X(I) = X(I) - TEMP*AP(K)
-                              K = K + 1
-   50                     CONTINUE
-                      END IF
-                      KK = KK + (N-J+1)
-   60             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 80 J = 1,N
-                      IF (X(JX).NE.ZERO) THEN
-                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
-                          TEMP = X(JX)
-                          IX = JX
-                          DO 70 K = KK + 1,KK + N - J
-                              IX = IX + INCX
-                              X(IX) = X(IX) - TEMP*AP(K)
-   70                     CONTINUE
-                      END IF
-                      JX = JX + INCX
-                      KK = KK + (N-J+1)
-   80             CONTINUE
-              END IF
-          END IF
-      ELSE
-*
-*        Form  x := inv( A' )*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 100 J = 1,N
-                      TEMP = X(J)
-                      K = KK
-                      DO 90 I = 1,J - 1
-                          TEMP = TEMP - AP(K)*X(I)
-                          K = K + 1
-   90                 CONTINUE
-                      IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
-                      X(J) = TEMP
-                      KK = KK + J
-  100             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 120 J = 1,N
-                      TEMP = X(JX)
-                      IX = KX
-                      DO 110 K = KK,KK + J - 2
-                          TEMP = TEMP - AP(K)*X(IX)
-                          IX = IX + INCX
-  110                 CONTINUE
-                      IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
-                      X(JX) = TEMP
-                      JX = JX + INCX
-                      KK = KK + J
-  120             CONTINUE
-              END IF
-          ELSE
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 140 J = N,1,-1
-                      TEMP = X(J)
-                      K = KK
-                      DO 130 I = N,J + 1,-1
-                          TEMP = TEMP - AP(K)*X(I)
-                          K = K - 1
-  130                 CONTINUE
-                      IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
-                      X(J) = TEMP
-                      KK = KK - (N-J+1)
-  140             CONTINUE
-              ELSE
-                  KX = KX + (N-1)*INCX
-                  JX = KX
-                  DO 160 J = N,1,-1
-                      TEMP = X(JX)
-                      IX = KX
-                      DO 150 K = KK,KK - (N- (J+1)),-1
-                          TEMP = TEMP - AP(K)*X(IX)
-                          IX = IX - INCX
-  150                 CONTINUE
-                      IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
-                      X(JX) = TEMP
-                      JX = JX - INCX
-                      KK = KK - (N-J+1)
-  160             CONTINUE
-              END IF
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of STPSV .
-*
-      END
diff --git a/blas/zhpr.f b/blas/zhpr.f
deleted file mode 100644
index 40efbc7..0000000
--- a/blas/zhpr.f
+++ /dev/null
@@ -1,220 +0,0 @@
-      SUBROUTINE ZHPR(UPLO,N,ALPHA,X,INCX,AP)
-*     .. Scalar Arguments ..
-      DOUBLE PRECISION ALPHA
-      INTEGER INCX,N
-      CHARACTER UPLO
-*     ..
-*     .. Array Arguments ..
-      DOUBLE COMPLEX AP(*),X(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  ZHPR    performs the hermitian rank 1 operation
-*
-*     A := alpha*x*conjg( x' ) + A,
-*
-*  where alpha is a real scalar, x is an n element vector and A is an
-*  n by n hermitian matrix, supplied in packed form.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the upper or lower
-*           triangular part of the matrix A is supplied in the packed
-*           array AP as follows:
-*
-*              UPLO = 'U' or 'u'   The upper triangular part of A is
-*                                  supplied in AP.
-*
-*              UPLO = 'L' or 'l'   The lower triangular part of A is
-*                                  supplied in AP.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  ALPHA  - DOUBLE PRECISION.
-*           On entry, ALPHA specifies the scalar alpha.
-*           Unchanged on exit.
-*
-*  X      - COMPLEX*16       array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element vector x.
-*           Unchanged on exit.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  AP     - COMPLEX*16       array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular part of the hermitian matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
-*           and a( 2, 2 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the upper triangular part of the
-*           updated matrix.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular part of the hermitian matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
-*           and a( 3, 1 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the lower triangular part of the
-*           updated matrix.
-*           Note that the imaginary parts of the diagonal elements need
-*           not be set, they are assumed to be zero, and on exit they
-*           are set to zero.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      DOUBLE COMPLEX ZERO
-      PARAMETER (ZERO= (0.0D+0,0.0D+0))
-*     ..
-*     .. Local Scalars ..
-      DOUBLE COMPLEX TEMP
-      INTEGER I,INFO,IX,J,JX,K,KK,KX
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*     .. Intrinsic Functions ..
-      INTRINSIC DBLE,DCONJG
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (N.LT.0) THEN
-          INFO = 2
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 5
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('ZHPR  ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN
-*
-*     Set the start point in X if the increment is not unity.
-*
-      IF (INCX.LE.0) THEN
-          KX = 1 - (N-1)*INCX
-      ELSE IF (INCX.NE.1) THEN
-          KX = 1
-      END IF
-*
-*     Start the operations. In this version the elements of the array AP
-*     are accessed sequentially with one pass through AP.
-*
-      KK = 1
-      IF (LSAME(UPLO,'U')) THEN
-*
-*        Form  A  when upper triangle is stored in AP.
-*
-          IF (INCX.EQ.1) THEN
-              DO 20 J = 1,N
-                  IF (X(J).NE.ZERO) THEN
-                      TEMP = ALPHA*DCONJG(X(J))
-                      K = KK
-                      DO 10 I = 1,J - 1
-                          AP(K) = AP(K) + X(I)*TEMP
-                          K = K + 1
-   10                 CONTINUE
-                      AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(J)*TEMP)
-                  ELSE
-                      AP(KK+J-1) = DBLE(AP(KK+J-1))
-                  END IF
-                  KK = KK + J
-   20         CONTINUE
-          ELSE
-              JX = KX
-              DO 40 J = 1,N
-                  IF (X(JX).NE.ZERO) THEN
-                      TEMP = ALPHA*DCONJG(X(JX))
-                      IX = KX
-                      DO 30 K = KK,KK + J - 2
-                          AP(K) = AP(K) + X(IX)*TEMP
-                          IX = IX + INCX
-   30                 CONTINUE
-                      AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(JX)*TEMP)
-                  ELSE
-                      AP(KK+J-1) = DBLE(AP(KK+J-1))
-                  END IF
-                  JX = JX + INCX
-                  KK = KK + J
-   40         CONTINUE
-          END IF
-      ELSE
-*
-*        Form  A  when lower triangle is stored in AP.
-*
-          IF (INCX.EQ.1) THEN
-              DO 60 J = 1,N
-                  IF (X(J).NE.ZERO) THEN
-                      TEMP = ALPHA*DCONJG(X(J))
-                      AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(J))
-                      K = KK + 1
-                      DO 50 I = J + 1,N
-                          AP(K) = AP(K) + X(I)*TEMP
-                          K = K + 1
-   50                 CONTINUE
-                  ELSE
-                      AP(KK) = DBLE(AP(KK))
-                  END IF
-                  KK = KK + N - J + 1
-   60         CONTINUE
-          ELSE
-              JX = KX
-              DO 80 J = 1,N
-                  IF (X(JX).NE.ZERO) THEN
-                      TEMP = ALPHA*DCONJG(X(JX))
-                      AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(JX))
-                      IX = JX
-                      DO 70 K = KK + 1,KK + N - J
-                          IX = IX + INCX
-                          AP(K) = AP(K) + X(IX)*TEMP
-   70                 CONTINUE
-                  ELSE
-                      AP(KK) = DBLE(AP(KK))
-                  END IF
-                  JX = JX + INCX
-                  KK = KK + N - J + 1
-   80         CONTINUE
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of ZHPR  .
-*
-      END
diff --git a/blas/zhpr2.f b/blas/zhpr2.f
deleted file mode 100644
index 9997746..0000000
--- a/blas/zhpr2.f
+++ /dev/null
@@ -1,255 +0,0 @@
-      SUBROUTINE ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
-*     .. Scalar Arguments ..
-      DOUBLE COMPLEX ALPHA
-      INTEGER INCX,INCY,N
-      CHARACTER UPLO
-*     ..
-*     .. Array Arguments ..
-      DOUBLE COMPLEX AP(*),X(*),Y(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  ZHPR2  performs the hermitian rank 2 operation
-*
-*     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
-*
-*  where alpha is a scalar, x and y are n element vectors and A is an
-*  n by n hermitian matrix, supplied in packed form.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the upper or lower
-*           triangular part of the matrix A is supplied in the packed
-*           array AP as follows:
-*
-*              UPLO = 'U' or 'u'   The upper triangular part of A is
-*                                  supplied in AP.
-*
-*              UPLO = 'L' or 'l'   The lower triangular part of A is
-*                                  supplied in AP.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  ALPHA  - COMPLEX*16      .
-*           On entry, ALPHA specifies the scalar alpha.
-*           Unchanged on exit.
-*
-*  X      - COMPLEX*16       array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element vector x.
-*           Unchanged on exit.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  Y      - COMPLEX*16       array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCY ) ).
-*           Before entry, the incremented array Y must contain the n
-*           element vector y.
-*           Unchanged on exit.
-*
-*  INCY   - INTEGER.
-*           On entry, INCY specifies the increment for the elements of
-*           Y. INCY must not be zero.
-*           Unchanged on exit.
-*
-*  AP     - COMPLEX*16       array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular part of the hermitian matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
-*           and a( 2, 2 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the upper triangular part of the
-*           updated matrix.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular part of the hermitian matrix
-*           packed sequentially, column by column, so that AP( 1 )
-*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
-*           and a( 3, 1 ) respectively, and so on. On exit, the array
-*           AP is overwritten by the lower triangular part of the
-*           updated matrix.
-*           Note that the imaginary parts of the diagonal elements need
-*           not be set, they are assumed to be zero, and on exit they
-*           are set to zero.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      DOUBLE COMPLEX ZERO
-      PARAMETER (ZERO= (0.0D+0,0.0D+0))
-*     ..
-*     .. Local Scalars ..
-      DOUBLE COMPLEX TEMP1,TEMP2
-      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*     .. Intrinsic Functions ..
-      INTRINSIC DBLE,DCONJG
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (N.LT.0) THEN
-          INFO = 2
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 5
-      ELSE IF (INCY.EQ.0) THEN
-          INFO = 7
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('ZHPR2 ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
-*
-*     Set up the start points in X and Y if the increments are not both
-*     unity.
-*
-      IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
-          IF (INCX.GT.0) THEN
-              KX = 1
-          ELSE
-              KX = 1 - (N-1)*INCX
-          END IF
-          IF (INCY.GT.0) THEN
-              KY = 1
-          ELSE
-              KY = 1 - (N-1)*INCY
-          END IF
-          JX = KX
-          JY = KY
-      END IF
-*
-*     Start the operations. In this version the elements of the array AP
-*     are accessed sequentially with one pass through AP.
-*
-      KK = 1
-      IF (LSAME(UPLO,'U')) THEN
-*
-*        Form  A  when upper triangle is stored in AP.
-*
-          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
-              DO 20 J = 1,N
-                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*DCONJG(Y(J))
-                      TEMP2 = DCONJG(ALPHA*X(J))
-                      K = KK
-                      DO 10 I = 1,J - 1
-                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
-                          K = K + 1
-   10                 CONTINUE
-                      AP(KK+J-1) = DBLE(AP(KK+J-1)) +
-     +                             DBLE(X(J)*TEMP1+Y(J)*TEMP2)
-                  ELSE
-                      AP(KK+J-1) = DBLE(AP(KK+J-1))
-                  END IF
-                  KK = KK + J
-   20         CONTINUE
-          ELSE
-              DO 40 J = 1,N
-                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*DCONJG(Y(JY))
-                      TEMP2 = DCONJG(ALPHA*X(JX))
-                      IX = KX
-                      IY = KY
-                      DO 30 K = KK,KK + J - 2
-                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
-                          IX = IX + INCX
-                          IY = IY + INCY
-   30                 CONTINUE
-                      AP(KK+J-1) = DBLE(AP(KK+J-1)) +
-     +                             DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
-                  ELSE
-                      AP(KK+J-1) = DBLE(AP(KK+J-1))
-                  END IF
-                  JX = JX + INCX
-                  JY = JY + INCY
-                  KK = KK + J
-   40         CONTINUE
-          END IF
-      ELSE
-*
-*        Form  A  when lower triangle is stored in AP.
-*
-          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
-              DO 60 J = 1,N
-                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*DCONJG(Y(J))
-                      TEMP2 = DCONJG(ALPHA*X(J))
-                      AP(KK) = DBLE(AP(KK)) +
-     +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
-                      K = KK + 1
-                      DO 50 I = J + 1,N
-                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
-                          K = K + 1
-   50                 CONTINUE
-                  ELSE
-                      AP(KK) = DBLE(AP(KK))
-                  END IF
-                  KK = KK + N - J + 1
-   60         CONTINUE
-          ELSE
-              DO 80 J = 1,N
-                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
-                      TEMP1 = ALPHA*DCONJG(Y(JY))
-                      TEMP2 = DCONJG(ALPHA*X(JX))
-                      AP(KK) = DBLE(AP(KK)) +
-     +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
-                      IX = JX
-                      IY = JY
-                      DO 70 K = KK + 1,KK + N - J
-                          IX = IX + INCX
-                          IY = IY + INCY
-                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
-   70                 CONTINUE
-                  ELSE
-                      AP(KK) = DBLE(AP(KK))
-                  END IF
-                  JX = JX + INCX
-                  JY = JY + INCY
-                  KK = KK + N - J + 1
-   80         CONTINUE
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of ZHPR2 .
-*
-      END
diff --git a/blas/ztpmv.f b/blas/ztpmv.f
deleted file mode 100644
index 5a7b3b8..0000000
--- a/blas/ztpmv.f
+++ /dev/null
@@ -1,329 +0,0 @@
-      SUBROUTINE ZTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
-*     .. Scalar Arguments ..
-      INTEGER INCX,N
-      CHARACTER DIAG,TRANS,UPLO
-*     ..
-*     .. Array Arguments ..
-      DOUBLE COMPLEX AP(*),X(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  ZTPMV  performs one of the matrix-vector operations
-*
-*     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x,
-*
-*  where x is an n element vector and  A is an n by n unit, or non-unit,
-*  upper or lower triangular matrix, supplied in packed form.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the matrix is an upper or
-*           lower triangular matrix as follows:
-*
-*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
-*
-*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
-*
-*           Unchanged on exit.
-*
-*  TRANS  - CHARACTER*1.
-*           On entry, TRANS specifies the operation to be performed as
-*           follows:
-*
-*              TRANS = 'N' or 'n'   x := A*x.
-*
-*              TRANS = 'T' or 't'   x := A'*x.
-*
-*              TRANS = 'C' or 'c'   x := conjg( A' )*x.
-*
-*           Unchanged on exit.
-*
-*  DIAG   - CHARACTER*1.
-*           On entry, DIAG specifies whether or not A is unit
-*           triangular as follows:
-*
-*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
-*
-*              DIAG = 'N' or 'n'   A is not assumed to be unit
-*                                  triangular.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  AP     - COMPLEX*16       array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
-*           respectively, and so on.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
-*           respectively, and so on.
-*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
-*           A are not referenced, but are assumed to be unity.
-*           Unchanged on exit.
-*
-*  X      - COMPLEX*16       array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element vector x. On exit, X is overwritten with the
-*           tranformed vector x.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      DOUBLE COMPLEX ZERO
-      PARAMETER (ZERO= (0.0D+0,0.0D+0))
-*     ..
-*     .. Local Scalars ..
-      DOUBLE COMPLEX TEMP
-      INTEGER I,INFO,IX,J,JX,K,KK,KX
-      LOGICAL NOCONJ,NOUNIT
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*     .. Intrinsic Functions ..
-      INTRINSIC DCONJG
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
-     +         .NOT.LSAME(TRANS,'C')) THEN
-          INFO = 2
-      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
-          INFO = 3
-      ELSE IF (N.LT.0) THEN
-          INFO = 4
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 7
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('ZTPMV ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF (N.EQ.0) RETURN
-*
-      NOCONJ = LSAME(TRANS,'T')
-      NOUNIT = LSAME(DIAG,'N')
-*
-*     Set up the start point in X if the increment is not unity. This
-*     will be  ( N - 1 )*INCX  too small for descending loops.
-*
-      IF (INCX.LE.0) THEN
-          KX = 1 - (N-1)*INCX
-      ELSE IF (INCX.NE.1) THEN
-          KX = 1
-      END IF
-*
-*     Start the operations. In this version the elements of AP are
-*     accessed sequentially with one pass through AP.
-*
-      IF (LSAME(TRANS,'N')) THEN
-*
-*        Form  x:= A*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 20 J = 1,N
-                      IF (X(J).NE.ZERO) THEN
-                          TEMP = X(J)
-                          K = KK
-                          DO 10 I = 1,J - 1
-                              X(I) = X(I) + TEMP*AP(K)
-                              K = K + 1
-   10                     CONTINUE
-                          IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
-                      END IF
-                      KK = KK + J
-   20             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 40 J = 1,N
-                      IF (X(JX).NE.ZERO) THEN
-                          TEMP = X(JX)
-                          IX = KX
-                          DO 30 K = KK,KK + J - 2
-                              X(IX) = X(IX) + TEMP*AP(K)
-                              IX = IX + INCX
-   30                     CONTINUE
-                          IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
-                      END IF
-                      JX = JX + INCX
-                      KK = KK + J
-   40             CONTINUE
-              END IF
-          ELSE
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 60 J = N,1,-1
-                      IF (X(J).NE.ZERO) THEN
-                          TEMP = X(J)
-                          K = KK
-                          DO 50 I = N,J + 1,-1
-                              X(I) = X(I) + TEMP*AP(K)
-                              K = K - 1
-   50                     CONTINUE
-                          IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
-                      END IF
-                      KK = KK - (N-J+1)
-   60             CONTINUE
-              ELSE
-                  KX = KX + (N-1)*INCX
-                  JX = KX
-                  DO 80 J = N,1,-1
-                      IF (X(JX).NE.ZERO) THEN
-                          TEMP = X(JX)
-                          IX = KX
-                          DO 70 K = KK,KK - (N- (J+1)),-1
-                              X(IX) = X(IX) + TEMP*AP(K)
-                              IX = IX - INCX
-   70                     CONTINUE
-                          IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
-                      END IF
-                      JX = JX - INCX
-                      KK = KK - (N-J+1)
-   80             CONTINUE
-              END IF
-          END IF
-      ELSE
-*
-*        Form  x := A'*x  or  x := conjg( A' )*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 110 J = N,1,-1
-                      TEMP = X(J)
-                      K = KK - 1
-                      IF (NOCONJ) THEN
-                          IF (NOUNIT) TEMP = TEMP*AP(KK)
-                          DO 90 I = J - 1,1,-1
-                              TEMP = TEMP + AP(K)*X(I)
-                              K = K - 1
-   90                     CONTINUE
-                      ELSE
-                          IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
-                          DO 100 I = J - 1,1,-1
-                              TEMP = TEMP + DCONJG(AP(K))*X(I)
-                              K = K - 1
-  100                     CONTINUE
-                      END IF
-                      X(J) = TEMP
-                      KK = KK - J
-  110             CONTINUE
-              ELSE
-                  JX = KX + (N-1)*INCX
-                  DO 140 J = N,1,-1
-                      TEMP = X(JX)
-                      IX = JX
-                      IF (NOCONJ) THEN
-                          IF (NOUNIT) TEMP = TEMP*AP(KK)
-                          DO 120 K = KK - 1,KK - J + 1,-1
-                              IX = IX - INCX
-                              TEMP = TEMP + AP(K)*X(IX)
-  120                     CONTINUE
-                      ELSE
-                          IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
-                          DO 130 K = KK - 1,KK - J + 1,-1
-                              IX = IX - INCX
-                              TEMP = TEMP + DCONJG(AP(K))*X(IX)
-  130                     CONTINUE
-                      END IF
-                      X(JX) = TEMP
-                      JX = JX - INCX
-                      KK = KK - J
-  140             CONTINUE
-              END IF
-          ELSE
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 170 J = 1,N
-                      TEMP = X(J)
-                      K = KK + 1
-                      IF (NOCONJ) THEN
-                          IF (NOUNIT) TEMP = TEMP*AP(KK)
-                          DO 150 I = J + 1,N
-                              TEMP = TEMP + AP(K)*X(I)
-                              K = K + 1
-  150                     CONTINUE
-                      ELSE
-                          IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
-                          DO 160 I = J + 1,N
-                              TEMP = TEMP + DCONJG(AP(K))*X(I)
-                              K = K + 1
-  160                     CONTINUE
-                      END IF
-                      X(J) = TEMP
-                      KK = KK + (N-J+1)
-  170             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 200 J = 1,N
-                      TEMP = X(JX)
-                      IX = JX
-                      IF (NOCONJ) THEN
-                          IF (NOUNIT) TEMP = TEMP*AP(KK)
-                          DO 180 K = KK + 1,KK + N - J
-                              IX = IX + INCX
-                              TEMP = TEMP + AP(K)*X(IX)
-  180                     CONTINUE
-                      ELSE
-                          IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
-                          DO 190 K = KK + 1,KK + N - J
-                              IX = IX + INCX
-                              TEMP = TEMP + DCONJG(AP(K))*X(IX)
-  190                     CONTINUE
-                      END IF
-                      X(JX) = TEMP
-                      JX = JX + INCX
-                      KK = KK + (N-J+1)
-  200             CONTINUE
-              END IF
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of ZTPMV .
-*
-      END
diff --git a/blas/ztpsv.f b/blas/ztpsv.f
deleted file mode 100644
index b56e1d8..0000000
--- a/blas/ztpsv.f
+++ /dev/null
@@ -1,332 +0,0 @@
-      SUBROUTINE ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
-*     .. Scalar Arguments ..
-      INTEGER INCX,N
-      CHARACTER DIAG,TRANS,UPLO
-*     ..
-*     .. Array Arguments ..
-      DOUBLE COMPLEX AP(*),X(*)
-*     ..
-*
-*  Purpose
-*  =======
-*
-*  ZTPSV  solves one of the systems of equations
-*
-*     A*x = b,   or   A'*x = b,   or   conjg( A' )*x = b,
-*
-*  where b and x are n element vectors and A is an n by n unit, or
-*  non-unit, upper or lower triangular matrix, supplied in packed form.
-*
-*  No test for singularity or near-singularity is included in this
-*  routine. Such tests must be performed before calling this routine.
-*
-*  Arguments
-*  ==========
-*
-*  UPLO   - CHARACTER*1.
-*           On entry, UPLO specifies whether the matrix is an upper or
-*           lower triangular matrix as follows:
-*
-*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
-*
-*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
-*
-*           Unchanged on exit.
-*
-*  TRANS  - CHARACTER*1.
-*           On entry, TRANS specifies the equations to be solved as
-*           follows:
-*
-*              TRANS = 'N' or 'n'   A*x = b.
-*
-*              TRANS = 'T' or 't'   A'*x = b.
-*
-*              TRANS = 'C' or 'c'   conjg( A' )*x = b.
-*
-*           Unchanged on exit.
-*
-*  DIAG   - CHARACTER*1.
-*           On entry, DIAG specifies whether or not A is unit
-*           triangular as follows:
-*
-*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
-*
-*              DIAG = 'N' or 'n'   A is not assumed to be unit
-*                                  triangular.
-*
-*           Unchanged on exit.
-*
-*  N      - INTEGER.
-*           On entry, N specifies the order of the matrix A.
-*           N must be at least zero.
-*           Unchanged on exit.
-*
-*  AP     - COMPLEX*16       array of DIMENSION at least
-*           ( ( n*( n + 1 ) )/2 ).
-*           Before entry with  UPLO = 'U' or 'u', the array AP must
-*           contain the upper triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
-*           respectively, and so on.
-*           Before entry with UPLO = 'L' or 'l', the array AP must
-*           contain the lower triangular matrix packed sequentially,
-*           column by column, so that AP( 1 ) contains a( 1, 1 ),
-*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
-*           respectively, and so on.
-*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
-*           A are not referenced, but are assumed to be unity.
-*           Unchanged on exit.
-*
-*  X      - COMPLEX*16       array of dimension at least
-*           ( 1 + ( n - 1 )*abs( INCX ) ).
-*           Before entry, the incremented array X must contain the n
-*           element right-hand side vector b. On exit, X is overwritten
-*           with the solution vector x.
-*
-*  INCX   - INTEGER.
-*           On entry, INCX specifies the increment for the elements of
-*           X. INCX must not be zero.
-*           Unchanged on exit.
-*
-*  Further Details
-*  ===============
-*
-*  Level 2 Blas routine.
-*
-*  -- Written on 22-October-1986.
-*     Jack Dongarra, Argonne National Lab.
-*     Jeremy Du Croz, Nag Central Office.
-*     Sven Hammarling, Nag Central Office.
-*     Richard Hanson, Sandia National Labs.
-*
-*  =====================================================================
-*
-*     .. Parameters ..
-      DOUBLE COMPLEX ZERO
-      PARAMETER (ZERO= (0.0D+0,0.0D+0))
-*     ..
-*     .. Local Scalars ..
-      DOUBLE COMPLEX TEMP
-      INTEGER I,INFO,IX,J,JX,K,KK,KX
-      LOGICAL NOCONJ,NOUNIT
-*     ..
-*     .. External Functions ..
-      LOGICAL LSAME
-      EXTERNAL LSAME
-*     ..
-*     .. External Subroutines ..
-      EXTERNAL XERBLA
-*     ..
-*     .. Intrinsic Functions ..
-      INTRINSIC DCONJG
-*     ..
-*
-*     Test the input parameters.
-*
-      INFO = 0
-      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
-          INFO = 1
-      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
-     +         .NOT.LSAME(TRANS,'C')) THEN
-          INFO = 2
-      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
-          INFO = 3
-      ELSE IF (N.LT.0) THEN
-          INFO = 4
-      ELSE IF (INCX.EQ.0) THEN
-          INFO = 7
-      END IF
-      IF (INFO.NE.0) THEN
-          CALL XERBLA('ZTPSV ',INFO)
-          RETURN
-      END IF
-*
-*     Quick return if possible.
-*
-      IF (N.EQ.0) RETURN
-*
-      NOCONJ = LSAME(TRANS,'T')
-      NOUNIT = LSAME(DIAG,'N')
-*
-*     Set up the start point in X if the increment is not unity. This
-*     will be  ( N - 1 )*INCX  too small for descending loops.
-*
-      IF (INCX.LE.0) THEN
-          KX = 1 - (N-1)*INCX
-      ELSE IF (INCX.NE.1) THEN
-          KX = 1
-      END IF
-*
-*     Start the operations. In this version the elements of AP are
-*     accessed sequentially with one pass through AP.
-*
-      IF (LSAME(TRANS,'N')) THEN
-*
-*        Form  x := inv( A )*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 20 J = N,1,-1
-                      IF (X(J).NE.ZERO) THEN
-                          IF (NOUNIT) X(J) = X(J)/AP(KK)
-                          TEMP = X(J)
-                          K = KK - 1
-                          DO 10 I = J - 1,1,-1
-                              X(I) = X(I) - TEMP*AP(K)
-                              K = K - 1
-   10                     CONTINUE
-                      END IF
-                      KK = KK - J
-   20             CONTINUE
-              ELSE
-                  JX = KX + (N-1)*INCX
-                  DO 40 J = N,1,-1
-                      IF (X(JX).NE.ZERO) THEN
-                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
-                          TEMP = X(JX)
-                          IX = JX
-                          DO 30 K = KK - 1,KK - J + 1,-1
-                              IX = IX - INCX
-                              X(IX) = X(IX) - TEMP*AP(K)
-   30                     CONTINUE
-                      END IF
-                      JX = JX - INCX
-                      KK = KK - J
-   40             CONTINUE
-              END IF
-          ELSE
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 60 J = 1,N
-                      IF (X(J).NE.ZERO) THEN
-                          IF (NOUNIT) X(J) = X(J)/AP(KK)
-                          TEMP = X(J)
-                          K = KK + 1
-                          DO 50 I = J + 1,N
-                              X(I) = X(I) - TEMP*AP(K)
-                              K = K + 1
-   50                     CONTINUE
-                      END IF
-                      KK = KK + (N-J+1)
-   60             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 80 J = 1,N
-                      IF (X(JX).NE.ZERO) THEN
-                          IF (NOUNIT) X(JX) = X(JX)/AP(KK)
-                          TEMP = X(JX)
-                          IX = JX
-                          DO 70 K = KK + 1,KK + N - J
-                              IX = IX + INCX
-                              X(IX) = X(IX) - TEMP*AP(K)
-   70                     CONTINUE
-                      END IF
-                      JX = JX + INCX
-                      KK = KK + (N-J+1)
-   80             CONTINUE
-              END IF
-          END IF
-      ELSE
-*
-*        Form  x := inv( A' )*x  or  x := inv( conjg( A' ) )*x.
-*
-          IF (LSAME(UPLO,'U')) THEN
-              KK = 1
-              IF (INCX.EQ.1) THEN
-                  DO 110 J = 1,N
-                      TEMP = X(J)
-                      K = KK
-                      IF (NOCONJ) THEN
-                          DO 90 I = 1,J - 1
-                              TEMP = TEMP - AP(K)*X(I)
-                              K = K + 1
-   90                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
-                      ELSE
-                          DO 100 I = 1,J - 1
-                              TEMP = TEMP - DCONJG(AP(K))*X(I)
-                              K = K + 1
-  100                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1))
-                      END IF
-                      X(J) = TEMP
-                      KK = KK + J
-  110             CONTINUE
-              ELSE
-                  JX = KX
-                  DO 140 J = 1,N
-                      TEMP = X(JX)
-                      IX = KX
-                      IF (NOCONJ) THEN
-                          DO 120 K = KK,KK + J - 2
-                              TEMP = TEMP - AP(K)*X(IX)
-                              IX = IX + INCX
-  120                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
-                      ELSE
-                          DO 130 K = KK,KK + J - 2
-                              TEMP = TEMP - DCONJG(AP(K))*X(IX)
-                              IX = IX + INCX
-  130                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1))
-                      END IF
-                      X(JX) = TEMP
-                      JX = JX + INCX
-                      KK = KK + J
-  140             CONTINUE
-              END IF
-          ELSE
-              KK = (N* (N+1))/2
-              IF (INCX.EQ.1) THEN
-                  DO 170 J = N,1,-1
-                      TEMP = X(J)
-                      K = KK
-                      IF (NOCONJ) THEN
-                          DO 150 I = N,J + 1,-1
-                              TEMP = TEMP - AP(K)*X(I)
-                              K = K - 1
-  150                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
-                      ELSE
-                          DO 160 I = N,J + 1,-1
-                              TEMP = TEMP - DCONJG(AP(K))*X(I)
-                              K = K - 1
-  160                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J))
-                      END IF
-                      X(J) = TEMP
-                      KK = KK - (N-J+1)
-  170             CONTINUE
-              ELSE
-                  KX = KX + (N-1)*INCX
-                  JX = KX
-                  DO 200 J = N,1,-1
-                      TEMP = X(JX)
-                      IX = KX
-                      IF (NOCONJ) THEN
-                          DO 180 K = KK,KK - (N- (J+1)),-1
-                              TEMP = TEMP - AP(K)*X(IX)
-                              IX = IX - INCX
-  180                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
-                      ELSE
-                          DO 190 K = KK,KK - (N- (J+1)),-1
-                              TEMP = TEMP - DCONJG(AP(K))*X(IX)
-                              IX = IX - INCX
-  190                     CONTINUE
-                          IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J))
-                      END IF
-                      X(JX) = TEMP
-                      JX = JX - INCX
-                      KK = KK - (N-J+1)
-  200             CONTINUE
-              END IF
-          END IF
-      END IF
-*
-      RETURN
-*
-*     End of ZTPSV .
-*
-      END