blob: 941290a351d879917880c6247434235fc86583bb [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MAPPED_SPARSEMATRIX_H
#define EIGEN_MAPPED_SPARSEMATRIX_H
/** \class MappedSparseMatrix
*
* \brief Sparse matrix
*
* \param _Scalar the scalar type, i.e. the type of the coefficients
*
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
*
*/
template<typename _Scalar, int _Flags, typename _Index>
struct ei_traits<MappedSparseMatrix<_Scalar, _Flags, _Index> > : ei_traits<SparseMatrix<_Scalar, _Flags, _Index> >
{};
template<typename _Scalar, int _Flags, typename _Index>
class MappedSparseMatrix
: public SparseMatrixBase<MappedSparseMatrix<_Scalar, _Flags, _Index> >
{
public:
EIGEN_SPARSE_PUBLIC_INTERFACE(MappedSparseMatrix)
protected:
enum { IsRowMajor = Base::IsRowMajor };
Index m_outerSize;
Index m_innerSize;
Index m_nnz;
Index* m_outerIndex;
Index* m_innerIndices;
Scalar* m_values;
public:
inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
inline Index innerSize() const { return m_innerSize; }
inline Index outerSize() const { return m_outerSize; }
inline Index innerNonZeros(Index j) const { return m_outerIndex[j+1]-m_outerIndex[j]; }
//----------------------------------------
// direct access interface
inline const Scalar* _valuePtr() const { return m_values; }
inline Scalar* _valuePtr() { return m_values; }
inline const Index* _innerIndexPtr() const { return m_innerIndices; }
inline Index* _innerIndexPtr() { return m_innerIndices; }
inline const Index* _outerIndexPtr() const { return m_outerIndex; }
inline Index* _outerIndexPtr() { return m_outerIndex; }
//----------------------------------------
inline Scalar coeff(Index row, Index col) const
{
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index start = m_outerIndex[outer];
Index end = m_outerIndex[outer+1];
if (start==end)
return Scalar(0);
else if (end>0 && inner==m_innerIndices[end-1])
return m_values[end-1];
// ^^ optimization: let's first check if it is the last coefficient
// (very common in high level algorithms)
const Index* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end-1],inner);
const Index id = r-&m_innerIndices[0];
return ((*r==inner) && (id<end)) ? m_values[id] : Scalar(0);
}
inline Scalar& coeffRef(Index row, Index col)
{
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index start = m_outerIndex[outer];
Index end = m_outerIndex[outer+1];
ei_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
ei_assert(end>start && "coeffRef cannot be called on a zero coefficient");
Index* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end],inner);
const Index id = r-&m_innerIndices[0];
ei_assert((*r==inner) && (id<end) && "coeffRef cannot be called on a zero coefficient");
return m_values[id];
}
class InnerIterator;
/** \returns the number of non zero coefficients */
inline Index nonZeros() const { return m_nnz; }
inline MappedSparseMatrix(Index rows, Index cols, Index nnz, Index* outerIndexPtr, Index* innerIndexPtr, Scalar* valuePtr)
: m_outerSize(IsRowMajor?rows:cols), m_innerSize(IsRowMajor?cols:rows), m_nnz(nnz), m_outerIndex(outerIndexPtr),
m_innerIndices(innerIndexPtr), m_values(valuePtr)
{}
/** Empty destructor */
inline ~MappedSparseMatrix() {}
};
template<typename Scalar, int _Flags, typename _Index>
class MappedSparseMatrix<Scalar,_Flags,_Index>::InnerIterator
{
public:
InnerIterator(const MappedSparseMatrix& mat, Index outer)
: m_matrix(mat),
m_outer(outer),
m_id(mat._outerIndexPtr()[outer]),
m_start(m_id),
m_end(mat._outerIndexPtr()[outer+1])
{}
template<unsigned int Added, unsigned int Removed>
InnerIterator(const Flagged<MappedSparseMatrix,Added,Removed>& mat, Index outer)
: m_matrix(mat._expression()), m_id(m_matrix._outerIndexPtr()[outer]),
m_start(m_id), m_end(m_matrix._outerIndexPtr()[outer+1])
{}
inline InnerIterator& operator++() { m_id++; return *this; }
inline Scalar value() const { return m_matrix._valuePtr()[m_id]; }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix._valuePtr()[m_id]); }
inline Index index() const { return m_matrix._innerIndexPtr()[m_id]; }
inline Index row() const { return IsRowMajor ? m_outer : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer; }
inline operator bool() const { return (m_id < m_end) && (m_id>=m_start); }
protected:
const MappedSparseMatrix& m_matrix;
const Index m_outer;
Index m_id;
const Index m_start;
const Index m_end;
};
#endif // EIGEN_MAPPED_SPARSEMATRIX_H