Unify Inverse_SSE.h and Inverse_NEON.h into a single generic implementation using PacketMath.
diff --git a/Eigen/LU b/Eigen/LU
index ca72f13..2a6b771 100644
--- a/Eigen/LU
+++ b/Eigen/LU
@@ -40,12 +40,8 @@
 
 // Use the SSE optimized version whenever possible. At the moment the
 // SSE version doesn't compile when AVX is enabled
-#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX
-  #include "src/LU/arch/Inverse_SSE.h"
-#endif
-
-#if defined EIGEN_VECTORIZE_NEON
-  #include "src/LU/arch/Inverse_NEON.h"
+#if (defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX) || defined EIGEN_VECTORIZE_NEON
+  #include "src/LU/arch/InverseSize4.h"
 #endif
 
 #include "src/Core/util/ReenableStupidWarnings.h"
diff --git a/Eigen/src/Core/arch/NEON/PacketMath.h b/Eigen/src/Core/arch/NEON/PacketMath.h
index b927a16..a51fc88 100644
--- a/Eigen/src/Core/arch/NEON/PacketMath.h
+++ b/Eigen/src/Core/arch/NEON/PacketMath.h
@@ -84,6 +84,53 @@
 
 #endif // EIGEN_COMP_MSVC
 
+// fuctionally equivalent to _mm_shuffle_ps in SSE when interleave
+// == false (i.e. shuffle<false>(m, n, mask) equals _mm_shuffle_ps(m, n, mask)),
+// interleave m and n when interleave == true. Currently used in LU/arch/InverseSize4.h
+// to enable a shared implementation for fast inversion of matrices of size 4. 
+template<bool interleave> 
+EIGEN_STRONG_INLINE Packet4f shuffle(const Packet4f &m, const Packet4f &n, int mask)
+{
+  const float* a = reinterpret_cast<const float*>(&m);
+  const float* b = reinterpret_cast<const float*>(&n);
+  Packet4f res = {*(a + (mask & 3)), *(a + ((mask >> 2) & 3)), *(b + ((mask >> 4) & 3)), *(b + ((mask >> 6) & 3))};
+  return res;
+}
+
+template<> 
+EIGEN_STRONG_INLINE Packet4f shuffle<true>(const Packet4f &m, const Packet4f &n, int mask) 
+{
+  const float* a = reinterpret_cast<const float*>(&m);
+  const float* b = reinterpret_cast<const float*>(&n);
+  Packet4f res = {*(a + (mask & 3)), *(b + ((mask >> 2) & 3)), *(a + ((mask >> 4) & 3)), *(b + ((mask >> 6) & 3))};
+  return res;
+}
+
+EIGEN_STRONG_INLINE static int eigen_neon_shuffle_mask(int p, int q, int r, int s) {return ((s)<<6|(r)<<4|(q)<<2|(p));}
+
+EIGEN_STRONG_INLINE Packet4f vec4f_swizzle2(const Packet4f& a, const Packet4f& b, int p, int q, int r, int s)
+{ 
+  return shuffle<false>(a,b,eigen_neon_shuffle_mask(p, q, r, s));
+}
+EIGEN_STRONG_INLINE Packet4f vec4f_movelh(const Packet4f& a, const Packet4f& b)
+{
+  return shuffle<false>(a,b,eigen_neon_shuffle_mask(0, 1, 0, 1));
+}
+EIGEN_STRONG_INLINE Packet4f vec4f_movehl(const Packet4f& a, const Packet4f& b)
+{
+  return shuffle<false>(b,a,eigen_neon_shuffle_mask(2, 3, 2, 3));
+}
+EIGEN_STRONG_INLINE Packet4f vec4f_unpacklo(const Packet4f& a, const Packet4f& b)
+{
+  return shuffle<true>(a,b,eigen_neon_shuffle_mask(0, 0, 1, 1));
+}
+EIGEN_STRONG_INLINE Packet4f vec4f_unpackhi(const Packet4f& a, const Packet4f& b)
+{
+  return shuffle<true>(a,b,eigen_neon_shuffle_mask(2, 2, 3, 3));
+}
+#define vec4f_duplane(a, p) \
+  vdupq_lane_f32(vget_low_f32(a), p)
+
 #define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
   const Packet4f p4f_##NAME = pset1<Packet4f>(X)
 
@@ -3525,6 +3572,32 @@
 typedef float64x2_t Packet2d;
 typedef float64x1_t Packet1d;
 
+// fuctionally equivalent to _mm_shuffle_pd in SSE (i.e. shuffle(m, n, mask) equals _mm_shuffle_pd(m,n,mask))
+// Currently used in LU/arch/InverseSize4.h to enable a shared implementation 
+// for fast inversion of matrices of size 4.
+EIGEN_STRONG_INLINE Packet2d shuffle(const Packet2d& m, const Packet2d& n, int mask)
+{
+  const double* a = reinterpret_cast<const double*>(&m);
+  const double* b = reinterpret_cast<const double*>(&n);
+  Packet2d res = {*(a + (mask & 1)), *(b + ((mask >> 1) & 1))};
+  return res;
+}
+
+EIGEN_STRONG_INLINE Packet2d vec2d_swizzle2(const Packet2d& a, const Packet2d& b, int mask)
+{
+  return shuffle(a, b, mask);
+}
+EIGEN_STRONG_INLINE Packet2d vec2d_unpacklo(const Packet2d& a,const Packet2d& b)
+{
+  return shuffle(a, b, 0);
+}
+EIGEN_STRONG_INLINE Packet2d vec2d_unpackhi(const Packet2d& a,const Packet2d& b)
+{
+  return shuffle(a, b, 3);
+}
+#define vec2d_duplane(a, p) \
+  vdupq_laneq_f64(a, p)
+
 template<> struct packet_traits<double>  : default_packet_traits
 {
   typedef Packet2d type;
diff --git a/Eigen/src/Core/arch/NEON/TypeCasting.h b/Eigen/src/Core/arch/NEON/TypeCasting.h
index 80be213..54f9733 100644
--- a/Eigen/src/Core/arch/NEON/TypeCasting.h
+++ b/Eigen/src/Core/arch/NEON/TypeCasting.h
@@ -1401,6 +1401,14 @@
 EIGEN_STRONG_INLINE Packet2ul preinterpret<Packet2ul, Packet2d>(const Packet2d& a) {
   return vreinterpretq_u64_f64(a);
 }
+template <>
+EIGEN_STRONG_INLINE Packet2d preinterpret<Packet2d, Packet4i>(const Packet4i& a) {
+  return vreinterpretq_f64_s32(a);
+}
+template <>
+EIGEN_STRONG_INLINE Packet4i preinterpret<Packet4i, Packet2d>(const Packet2d& a) {
+  return vreinterpretq_s32_f64(a);
+}
 
 #endif  // EIGEN_ARCH_ARM64
 
diff --git a/Eigen/src/Core/arch/SSE/PacketMath.h b/Eigen/src/Core/arch/SSE/PacketMath.h
index c39c0a0..4db7014 100755
--- a/Eigen/src/Core/arch/SSE/PacketMath.h
+++ b/Eigen/src/Core/arch/SSE/PacketMath.h
@@ -52,22 +52,59 @@
 template<> struct is_arithmetic<Packet4i>  { enum { value = true }; };
 template<> struct is_arithmetic<Packet16b>  { enum { value = true }; };
 
-#define EIGEN_SSE_SHUFFLE_MASK(p,q,r,s) ((s)<<6|(r)<<4|(q)<<2|(p))
+template<int p, int q, int r, int s>
+struct shuffle_mask{
+ enum { mask = (s)<<6|(r)<<4|(q)<<2|(p) };
+};
 
+// TODO: change the implementation of all swizzle* ops from macro to template,
 #define vec4f_swizzle1(v,p,q,r,s) \
-  (_mm_castsi128_ps(_mm_shuffle_epi32( _mm_castps_si128(v), EIGEN_SSE_SHUFFLE_MASK(p,q,r,s))))
+  Packet4f(_mm_castsi128_ps(_mm_shuffle_epi32( _mm_castps_si128(v), (shuffle_mask<p,q,r,s>::mask))))
 
 #define vec4i_swizzle1(v,p,q,r,s) \
-  (_mm_shuffle_epi32( v, EIGEN_SSE_SHUFFLE_MASK(p,q,r,s)))
+  Packet4i(_mm_shuffle_epi32( v, (shuffle_mask<p,q,r,s>::mask)))
 
 #define vec2d_swizzle1(v,p,q) \
-  (_mm_castsi128_pd(_mm_shuffle_epi32( _mm_castpd_si128(v), EIGEN_SSE_SHUFFLE_MASK(2*p,2*p+1,2*q,2*q+1))))
+  Packet2d(_mm_castsi128_pd(_mm_shuffle_epi32( _mm_castpd_si128(v), (shuffle_mask<2*p,2*p+1,2*q,2*q+1>::mask))))
 
 #define vec4f_swizzle2(a,b,p,q,r,s) \
-  (_mm_shuffle_ps( (a), (b), EIGEN_SSE_SHUFFLE_MASK(p,q,r,s)))
+  Packet4f(_mm_shuffle_ps( (a), (b), (shuffle_mask<p,q,r,s>::mask)))
 
 #define vec4i_swizzle2(a,b,p,q,r,s) \
-  (_mm_castps_si128( (_mm_shuffle_ps( _mm_castsi128_ps(a), _mm_castsi128_ps(b), EIGEN_SSE_SHUFFLE_MASK(p,q,r,s)))))
+  Packet4i(_mm_castps_si128( (_mm_shuffle_ps( _mm_castsi128_ps(a), _mm_castsi128_ps(b), (shuffle_mask<p,q,r,s>::mask)))))
+
+EIGEN_STRONG_INLINE Packet4f vec4f_movelh(const Packet4f& a, const Packet4f& b)
+{
+  return Packet4f(_mm_movelh_ps(a,b));
+}
+EIGEN_STRONG_INLINE Packet4f vec4f_movehl(const Packet4f& a, const Packet4f& b)
+{
+  return Packet4f(_mm_movehl_ps(a,b));
+}
+EIGEN_STRONG_INLINE Packet4f vec4f_unpacklo(const Packet4f& a, const Packet4f& b)
+{
+  return Packet4f(_mm_unpacklo_ps(a,b));
+}
+EIGEN_STRONG_INLINE Packet4f vec4f_unpackhi(const Packet4f& a, const Packet4f& b)
+{
+  return Packet4f(_mm_unpackhi_ps(a,b));
+}
+#define vec4f_duplane(a,p) \
+  vec4f_swizzle2(a,a,p,p,p,p)
+
+#define vec2d_swizzle2(a,b,mask) \
+  Packet2d(_mm_shuffle_pd(a,b,mask))
+
+EIGEN_STRONG_INLINE Packet2d vec2d_unpacklo(const Packet2d& a, const Packet2d& b)
+{
+  return Packet2d(_mm_unpacklo_pd(a,b));
+}
+EIGEN_STRONG_INLINE Packet2d vec2d_unpackhi(const Packet2d& a, const Packet2d& b)
+{
+  return Packet2d(_mm_unpackhi_pd(a,b));
+}
+#define vec2d_duplane(a,p) \
+  vec2d_swizzle2(a,a,(p<<1)|p)
 
 #define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
   const Packet4f p4f_##NAME = pset1<Packet4f>(X)
diff --git a/Eigen/src/Core/arch/SSE/TypeCasting.h b/Eigen/src/Core/arch/SSE/TypeCasting.h
index 3e6cd90..d2a0037 100644
--- a/Eigen/src/Core/arch/SSE/TypeCasting.h
+++ b/Eigen/src/Core/arch/SSE/TypeCasting.h
@@ -77,6 +77,14 @@
   return _mm_castsi128_ps(a);
 }
 
+template<> EIGEN_STRONG_INLINE Packet2d preinterpret<Packet2d,Packet4i>(const Packet4i& a) {
+  return _mm_castsi128_pd(a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet4i preinterpret<Packet4i,Packet2d>(const Packet2d& a) {
+  return _mm_castpd_si128(a);
+}
+
 // Disable the following code since it's broken on too many platforms / compilers.
 //#elif defined(EIGEN_VECTORIZE_SSE) && (!EIGEN_ARCH_x86_64) && (!EIGEN_COMP_MSVC)
 #if 0
diff --git a/Eigen/src/LU/arch/InverseSize4.h b/Eigen/src/LU/arch/InverseSize4.h
new file mode 100644
index 0000000..a4c9ca2
--- /dev/null
+++ b/Eigen/src/LU/arch/InverseSize4.h
@@ -0,0 +1,348 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2001 Intel Corporation
+// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+//
+// The algorithm below is a reimplementation of former \src\LU\Inverse_SSE.h using PacketMath.
+// inv(M) = M#/|M|, where inv(M), M# and |M| denote the inverse of M,
+// adjugate of M and determinant of M respectively. M# is computed block-wise
+// using specific formulae. For proof, see:
+// https://lxjk.github.io/2017/09/03/Fast-4x4-Matrix-Inverse-with-SSE-SIMD-Explained.html
+// Variable names are adopted from \src\LU\Inverse_SSE.h.
+//
+// The SSE code for the 4x4 float and double matrix inverse in former (deprecated) \src\LU\Inverse_SSE.h
+// comes from the following Intel's library:
+// http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/
+//
+// Here is the respective copyright and license statement:
+//
+//   Copyright (c) 2001 Intel Corporation.
+//
+// Permition is granted to use, copy, distribute and prepare derivative works
+// of this library for any purpose and without fee, provided, that the above
+// copyright notice and this statement appear in all copies.
+// Intel makes no representations about the suitability of this software for
+// any purpose, and specifically disclaims all warranties.
+// See LEGAL.TXT for all the legal information.
+//
+// TODO: Unify implementations of different data types (i.e. float and double).
+#ifndef EIGEN_INVERSE_SIZE_4_H
+#define EIGEN_INVERSE_SIZE_4_H
+
+namespace Eigen
+{
+namespace internal
+{
+template <typename MatrixType, typename ResultType>
+struct compute_inverse_size4<Architecture::Target, float, MatrixType, ResultType>
+{
+  enum
+  {
+    MatrixAlignment = traits<MatrixType>::Alignment,
+    ResultAlignment = traits<ResultType>::Alignment,
+    StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
+  };
+  typedef typename conditional<(MatrixType::Flags & LinearAccessBit), MatrixType const &, typename MatrixType::PlainObject>::type ActualMatrixType;
+
+  static void run(const MatrixType &mat, ResultType &result)
+  {
+    ActualMatrixType matrix(mat);
+
+    Packet4f _L1 = matrix.template packet<MatrixAlignment>(0);
+    Packet4f _L2 = matrix.template packet<MatrixAlignment>(4);
+    Packet4f _L3 = matrix.template packet<MatrixAlignment>(8);
+    Packet4f _L4 = matrix.template packet<MatrixAlignment>(12);
+
+    // Four 2x2 sub-matrices of the input matrix
+    // input = [[A, B],
+    //          [C, D]]
+    Packet4f A, B, C, D;
+
+    if (!StorageOrdersMatch)
+    {
+      A = vec4f_unpacklo(_L1, _L2);
+      B = vec4f_unpacklo(_L3, _L4);
+      C = vec4f_unpackhi(_L1, _L2);
+      D = vec4f_unpackhi(_L3, _L4);
+    }
+    else
+    {
+      A = vec4f_movelh(_L1, _L2);
+      B = vec4f_movehl(_L2, _L1);
+      C = vec4f_movelh(_L3, _L4);
+      D = vec4f_movehl(_L4, _L3);
+    }
+
+    Packet4f AB, DC;
+
+    // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
+    AB = pmul(vec4f_swizzle2(A, A, 3, 3, 0, 0), B);
+    AB = psub(AB, pmul(vec4f_swizzle2(A, A, 1, 1, 2, 2), vec4f_swizzle2(B, B, 2, 3, 0, 1)));
+
+    // DC = D#*C
+    DC = pmul(vec4f_swizzle2(D, D, 3, 3, 0, 0), C);
+    DC = psub(DC, pmul(vec4f_swizzle2(D, D, 1, 1, 2, 2), vec4f_swizzle2(C, C, 2, 3, 0, 1)));
+
+    // determinants of the sub-matrices
+    Packet4f dA, dB, dC, dD;
+
+    dA = pmul(vec4f_swizzle2(A, A, 3, 3, 1, 1), A);
+    dA = psub(dA, vec4f_movehl(dA, dA));
+
+    dB = pmul(vec4f_swizzle2(B, B, 3, 3, 1, 1), B);
+    dB = psub(dB, vec4f_movehl(dB, dB));
+
+    dC = pmul(vec4f_swizzle2(C, C, 3, 3, 1, 1), C);
+    dC = psub(dC, vec4f_movehl(dC, dC));
+
+    dD = pmul(vec4f_swizzle2(D, D, 3, 3, 1, 1), D);
+    dD = psub(dD, vec4f_movehl(dD, dD));
+
+    Packet4f d, d1, d2;
+
+    d = pmul(vec4f_swizzle2(DC, DC, 0, 2, 1, 3), AB);
+    d = padd(d, vec4f_movehl(d, d));
+    d = padd(d, vec4f_swizzle2(d, d, 1, 0, 0, 0));
+    d1 = pmul(dA, dD);
+    d2 = pmul(dB, dC);
+
+    // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
+    Packet4f det = vec4f_duplane(psub(padd(d1, d2), d), 0);
+
+    // reciprocal of the determinant of the input matrix, rd = 1/det
+    Packet4f rd = pdiv(pset1<Packet4f>(1.0f), det);
+
+    // Four sub-matrices of the inverse
+    Packet4f iA, iB, iC, iD;
+
+    // iD = D*|A| - C*A#*B
+    iD = pmul(vec4f_swizzle2(C, C, 0, 0, 2, 2), vec4f_movelh(AB, AB));
+    iD = padd(iD, pmul(vec4f_swizzle2(C, C, 1, 1, 3, 3), vec4f_movehl(AB, AB)));
+    iD = psub(pmul(D, vec4f_duplane(dA, 0)), iD);
+
+    // iA = A*|D| - B*D#*C
+    iA = pmul(vec4f_swizzle2(B, B, 0, 0, 2, 2), vec4f_movelh(DC, DC));
+    iA = padd(iA, pmul(vec4f_swizzle2(B, B, 1, 1, 3, 3), vec4f_movehl(DC, DC)));
+    iA = psub(pmul(A, vec4f_duplane(dD, 0)), iA);
+
+    // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
+    iB = pmul(D, vec4f_swizzle2(AB, AB, 3, 0, 3, 0));
+    iB = psub(iB, pmul(vec4f_swizzle2(D, D, 1, 0, 3, 2), vec4f_swizzle2(AB, AB, 2, 1, 2, 1)));
+    iB = psub(pmul(C, vec4f_duplane(dB, 0)), iB);
+
+    // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
+    iC = pmul(A, vec4f_swizzle2(DC, DC, 3, 0, 3, 0));
+    iC = psub(iC, pmul(vec4f_swizzle2(A, A, 1, 0, 3, 2), vec4f_swizzle2(DC, DC, 2, 1, 2, 1)));
+    iC = psub(pmul(B, vec4f_duplane(dC, 0)), iC);
+
+    const int bits[4] = {0, -2147483648, -2147483648, 0};
+    const Packet4f p4f_sign_PNNP = preinterpret<Packet4f, Packet4i>(pgather<int, Packet4i>(bits, static_cast<Eigen::Index>(1)));
+    rd = pxor(rd, p4f_sign_PNNP);
+    iA = pmul(iA, rd);
+    iB = pmul(iB, rd);
+    iC = pmul(iC, rd);
+    iD = pmul(iD, rd);
+
+    Index res_stride = result.outerStride();
+    float *res = result.data();
+
+    pstoret<float, Packet4f, ResultAlignment>(res + 0, vec4f_swizzle2(iA, iB, 3, 1, 3, 1));
+    pstoret<float, Packet4f, ResultAlignment>(res + res_stride, vec4f_swizzle2(iA, iB, 2, 0, 2, 0));
+    pstoret<float, Packet4f, ResultAlignment>(res + 2 * res_stride, vec4f_swizzle2(iC, iD, 3, 1, 3, 1));
+    pstoret<float, Packet4f, ResultAlignment>(res + 3 * res_stride, vec4f_swizzle2(iC, iD, 2, 0, 2, 0));
+  }
+};
+
+#if !(defined EIGEN_VECTORIZE_NEON && !(EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG))
+// same algorithm as above, except that each operand is split into
+// halves for two registers to hold.
+template <typename MatrixType, typename ResultType>
+struct compute_inverse_size4<Architecture::Target, double, MatrixType, ResultType>
+{
+  enum
+  {
+    MatrixAlignment = traits<MatrixType>::Alignment,
+    ResultAlignment = traits<ResultType>::Alignment,
+    StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
+  };
+  typedef typename conditional<(MatrixType::Flags & LinearAccessBit),
+                               MatrixType const &,
+                               typename MatrixType::PlainObject>::type
+      ActualMatrixType;
+
+  static void run(const MatrixType &mat, ResultType &result)
+  {
+    ActualMatrixType matrix(mat);
+
+    // Four 2x2 sub-matrices of the input matrix, each is further divided into upper and lower
+    // row e.g. A1, upper row of A, A2, lower row of A
+    // input = [[A, B],  =  [[[A1, [B1,
+    //          [C, D]]        A2], B2]],
+    //                       [[C1, [D1,
+    //                         C2], D2]]]
+
+    Packet2d A1, A2, B1, B2, C1, C2, D1, D2;
+
+    if (StorageOrdersMatch)
+    {
+      A1 = matrix.template packet<MatrixAlignment>(0);
+      B1 = matrix.template packet<MatrixAlignment>(2);
+      A2 = matrix.template packet<MatrixAlignment>(4);
+      B2 = matrix.template packet<MatrixAlignment>(6);
+      C1 = matrix.template packet<MatrixAlignment>(8);
+      D1 = matrix.template packet<MatrixAlignment>(10);
+      C2 = matrix.template packet<MatrixAlignment>(12);
+      D2 = matrix.template packet<MatrixAlignment>(14);
+    }
+    else
+    {
+      Packet2d temp;
+      A1 = matrix.template packet<MatrixAlignment>(0);
+      C1 = matrix.template packet<MatrixAlignment>(2);
+      A2 = matrix.template packet<MatrixAlignment>(4);
+      C2 = matrix.template packet<MatrixAlignment>(6);
+
+      temp = A1;
+      A1 = vec2d_unpacklo(A1, A2);
+      A2 = vec2d_unpackhi(temp, A2);
+
+      temp = C1;
+      C1 = vec2d_unpacklo(C1, C2);
+      C2 = vec2d_unpackhi(temp, C2);
+
+      B1 = matrix.template packet<MatrixAlignment>(8);
+      D1 = matrix.template packet<MatrixAlignment>(10);
+      B2 = matrix.template packet<MatrixAlignment>(12);
+      D2 = matrix.template packet<MatrixAlignment>(14);
+
+      temp = B1;
+      B1 = vec2d_unpacklo(B1, B2);
+      B2 = vec2d_unpackhi(temp, B2);
+
+      temp = D1;
+      D1 = vec2d_unpacklo(D1, D2);
+      D2 = vec2d_unpackhi(temp, D2);
+    }
+
+    // determinants of the sub-matrices
+    Packet2d dA, dB, dC, dD;
+
+    dA = vec2d_swizzle2(A2, A2, 1);
+    dA = pmul(A1, dA);
+    dA = psub(dA, vec2d_duplane(dA, 1));
+
+    dB = vec2d_swizzle2(B2, B2, 1);
+    dB = pmul(B1, dB);
+    dB = psub(dB, vec2d_duplane(dB, 1));
+
+    dC = vec2d_swizzle2(C2, C2, 1);
+    dC = pmul(C1, dC);
+    dC = psub(dC, vec2d_duplane(dC, 1));
+
+    dD = vec2d_swizzle2(D2, D2, 1);
+    dD = pmul(D1, dD);
+    dD = psub(dD, vec2d_duplane(dD, 1));
+
+    Packet2d DC1, DC2, AB1, AB2;
+
+    // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
+    AB1 = pmul(B1, vec2d_duplane(A2, 1));
+    AB2 = pmul(B2, vec2d_duplane(A1, 0));
+    AB1 = psub(AB1, pmul(B2, vec2d_duplane(A1, 1)));
+    AB2 = psub(AB2, pmul(B1, vec2d_duplane(A2, 0)));
+
+    // DC = D#*C
+    DC1 = pmul(C1, vec2d_duplane(D2, 1));
+    DC2 = pmul(C2, vec2d_duplane(D1, 0));
+    DC1 = psub(DC1, pmul(C2, vec2d_duplane(D1, 1)));
+    DC2 = psub(DC2, pmul(C1, vec2d_duplane(D2, 0)));
+
+    Packet2d d1, d2;
+
+    // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
+    Packet2d det;
+
+    // reciprocal of the determinant of the input matrix, rd = 1/det
+    Packet2d rd;
+
+    d1 = pmul(AB1, vec2d_swizzle2(DC1, DC2, 0));
+    d2 = pmul(AB2, vec2d_swizzle2(DC1, DC2, 3));
+    rd = padd(d1, d2);
+    rd = padd(rd, vec2d_duplane(rd, 1));
+
+    d1 = pmul(dA, dD);
+    d2 = pmul(dB, dC);
+
+    det = padd(d1, d2);
+    det = psub(det, rd);
+    det = vec2d_duplane(det, 0);
+    rd = pdiv(pset1<Packet2d>(1.0), det);
+
+    // rows of four sub-matrices of the inverse
+    Packet2d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2;
+
+    // iD = D*|A| - C*A#*B
+    iD1 = pmul(AB1, vec2d_duplane(C1, 0));
+    iD2 = pmul(AB1, vec2d_duplane(C2, 0));
+    iD1 = padd(iD1, pmul(AB2, vec2d_duplane(C1, 1)));
+    iD2 = padd(iD2, pmul(AB2, vec2d_duplane(C2, 1)));
+    dA = vec2d_duplane(dA, 0);
+    iD1 = psub(pmul(D1, dA), iD1);
+    iD2 = psub(pmul(D2, dA), iD2);
+
+    // iA = A*|D| - B*D#*C
+    iA1 = pmul(DC1, vec2d_duplane(B1, 0));
+    iA2 = pmul(DC1, vec2d_duplane(B2, 0));
+    iA1 = padd(iA1, pmul(DC2, vec2d_duplane(B1, 1)));
+    iA2 = padd(iA2, pmul(DC2, vec2d_duplane(B2, 1)));
+    dD = vec2d_duplane(dD, 0);
+    iA1 = psub(pmul(A1, dD), iA1);
+    iA2 = psub(pmul(A2, dD), iA2);
+
+    // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
+    iB1 = pmul(D1, vec2d_swizzle2(AB2, AB1, 1));
+    iB2 = pmul(D2, vec2d_swizzle2(AB2, AB1, 1));
+    iB1 = psub(iB1, pmul(vec2d_swizzle2(D1, D1, 1), vec2d_swizzle2(AB2, AB1, 2)));
+    iB2 = psub(iB2, pmul(vec2d_swizzle2(D2, D2, 1), vec2d_swizzle2(AB2, AB1, 2)));
+    dB = vec2d_duplane(dB, 0);
+    iB1 = psub(pmul(C1, dB), iB1);
+    iB2 = psub(pmul(C2, dB), iB2);
+
+    // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
+    iC1 = pmul(A1, vec2d_swizzle2(DC2, DC1, 1));
+    iC2 = pmul(A2, vec2d_swizzle2(DC2, DC1, 1));
+    iC1 = psub(iC1, pmul(vec2d_swizzle2(A1, A1, 1), vec2d_swizzle2(DC2, DC1, 2)));
+    iC2 = psub(iC2, pmul(vec2d_swizzle2(A2, A2, 1), vec2d_swizzle2(DC2, DC1, 2)));
+    dC = vec2d_duplane(dC, 0);
+    iC1 = psub(pmul(B1, dC), iC1);
+    iC2 = psub(pmul(B2, dC), iC2);
+
+    const int bits1[4] = {0, -2147483648, 0, 0};
+    const int bits2[4] = {0, 0, 0, -2147483648};
+    const Packet2d _Sign_NP = preinterpret<Packet2d, Packet4i>(pgather<int, Packet4i>(bits1, static_cast<Eigen::Index>(1)));
+    const Packet2d _Sign_PN = preinterpret<Packet2d, Packet4i>(pgather<int, Packet4i>(bits2, static_cast<Eigen::Index>(1)));
+    d1 = pxor(rd, _Sign_PN);
+    d2 = pxor(rd, _Sign_NP);
+
+    Index res_stride = result.outerStride();
+    double *res = result.data();
+    pstoret<double, Packet2d, ResultAlignment>(res + 0, pmul(vec2d_swizzle2(iA2, iA1, 3), d1));
+    pstoret<double, Packet2d, ResultAlignment>(res + res_stride, pmul(vec2d_swizzle2(iA2, iA1, 0), d2));
+    pstoret<double, Packet2d, ResultAlignment>(res + 2, pmul(vec2d_swizzle2(iB2, iB1, 3), d1));
+    pstoret<double, Packet2d, ResultAlignment>(res + res_stride + 2, pmul(vec2d_swizzle2(iB2, iB1, 0), d2));
+    pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 3), d1));
+    pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 0), d2));
+    pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 3), d1));
+    pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 0), d2));
+  }
+};
+#endif
+} // namespace internal
+} // namespace Eigen
+#endif
\ No newline at end of file
diff --git a/Eigen/src/LU/arch/Inverse_NEON.h b/Eigen/src/LU/arch/Inverse_NEON.h
deleted file mode 100644
index ed64b1b..0000000
--- a/Eigen/src/LU/arch/Inverse_NEON.h
+++ /dev/null
@@ -1,372 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-//
-// The algorithm below is a re-implementation of \src\LU\Inverse_SSE.h using NEON
-// intrinsics. inv(M) = M#/|M|, where inv(M), M# and |M| denote the inverse of M,
-// adjugate of M and determinant of M respectively. M# is computed block-wise
-// using specific formulae. For proof, see:
-// https://lxjk.github.io/2017/09/03/Fast-4x4-Matrix-Inverse-with-SSE-SIMD-Explained.html
-// Variable names are adopted from \src\LU\Inverse_SSE.h.
-
-// TODO: Unify implementations of different data types (i.e. float and double) and
-// different sets of instrinsics (i.e. SSE and NEON)
-#ifndef EIGEN_INVERSE_NEON_H
-#define EIGEN_INVERSE_NEON_H
-
-namespace Eigen
-{
-namespace internal
-{
-template <typename MatrixType, typename ResultType>
-struct compute_inverse_size4<Architecture::NEON, float, MatrixType, ResultType>
-{
-  enum
-  {
-    MatrixAlignment = traits<MatrixType>::Alignment,
-    ResultAlignment = traits<ResultType>::Alignment,
-    StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
-  };
-  typedef typename conditional<(MatrixType::Flags & LinearAccessBit), MatrixType const &, typename MatrixType::PlainObject>::type ActualMatrixType;
-
-  // fuctionally equivalent to _mm_shuffle_ps in SSE when interleave
-  // == false (i.e. shuffle(m, n, mask, false) equals _mm_shuffle_ps(m, n, mask)),
-  // interleave m and n when interleave == true
-  static Packet4f shuffle(const Packet4f &m, const Packet4f &n, int mask, bool interleave = false)
-  {
-    const float *a = reinterpret_cast<const float *>(&m);
-    const float *b = reinterpret_cast<const float *>(&n);
-    if (!interleave)
-    {
-      Packet4f res = {*(a + (mask & 3)), *(a + ((mask >> 2) & 3)), *(b + ((mask >> 4) & 3)), *(b + ((mask >> 6) & 3))};
-      return res;
-    }
-    else
-    {
-      Packet4f res = {*(a + (mask & 3)), *(b + ((mask >> 2) & 3)), *(a + ((mask >> 4) & 3)), *(b + ((mask >> 6) & 3))};
-      return res;
-    }
-  }
-
-  static void run(const MatrixType &mat, ResultType &result)
-  {
-    ActualMatrixType matrix(mat);
-
-    Packet4f _L1 = matrix.template packet<MatrixAlignment>(0);
-    Packet4f _L2 = matrix.template packet<MatrixAlignment>(4);
-    Packet4f _L3 = matrix.template packet<MatrixAlignment>(8);
-    Packet4f _L4 = matrix.template packet<MatrixAlignment>(12);
-
-    // Four 2x2 sub-matrices of the input matrix
-    // input = [[A, B],
-    //          [C, D]]
-    Packet4f A, B, C, D;
-
-    if (!StorageOrdersMatch)
-    {
-      A = shuffle(_L1, _L2, 0x50, true);
-      B = shuffle(_L3, _L4, 0x50, true);
-      C = shuffle(_L1, _L2, 0xFA, true);
-      D = shuffle(_L3, _L4, 0xFA, true);
-    }
-    else
-    {
-      A = shuffle(_L1, _L2, 0x44);
-      B = shuffle(_L1, _L2, 0xEE);
-      C = shuffle(_L3, _L4, 0x44);
-      D = shuffle(_L3, _L4, 0xEE);
-    }
-
-    Packet4f AB, DC, temp;
-
-    // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
-    AB = shuffle(A, A, 0x0F);
-    AB = pmul(AB, B);
-
-    temp = shuffle(A, A, 0xA5);
-    temp = pmul(temp, shuffle(B, B, 0x4E));
-    AB = psub(AB, temp);
-
-    // DC = D#*C
-    DC = shuffle(D, D, 0x0F);
-    DC = pmul(DC, C);
-    temp = shuffle(D, D, 0xA5);
-    temp = pmul(temp, shuffle(C, C, 0x4E));
-    DC = psub(DC, temp);
-
-    // determinants of the sub-matrices
-    Packet4f dA, dB, dC, dD;
-
-    dA = pmul(shuffle(A, A, 0x5F), A);
-    dA = psub(dA, shuffle(dA, dA, 0xEE));
-
-    dB = pmul(shuffle(B, B, 0x5F), B);
-    dB = psub(dB, shuffle(dB, dB, 0xEE));
-
-    dC = pmul(shuffle(C, C, 0x5F), C);
-    dC = psub(dC, shuffle(dC, dC, 0xEE));
-
-    dD = pmul(shuffle(D, D, 0x5F), D);
-    dD = psub(dD, shuffle(dD, dD, 0xEE));
-
-    Packet4f d, d1, d2;
-    Packet2f sum;
-    temp = shuffle(DC, DC, 0xD8);
-    d = pmul(temp, AB);
-    sum = vpadd_f32(vadd_f32(vget_low_f32(d), vget_high_f32(d)), vadd_f32(vget_low_f32(d), vget_high_f32(d)));
-    d = vdupq_lane_f32(sum, 0);
-    d1 = pmul(dA, dD);
-    d2 = pmul(dB, dC);
-
-    // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
-    Packet4f det = psub(padd(d1, d2), d);
-
-    // reciprocal of the determinant of the input matrix, rd = 1/det
-    Packet4f rd = pdiv(vdupq_n_f32(float32_t(1.0)), det);
-
-    // Four sub-matrices of the inverse
-    Packet4f iA, iB, iC, iD;
-
-    // iD = D*|A| - C*A#*B
-    temp = shuffle(C, C, 0xA0);
-    temp = pmul(temp, shuffle(AB, AB, 0x44));
-    iD = shuffle(C, C, 0xF5);
-    iD = pmul(iD, shuffle(AB, AB, 0xEE));
-    iD = padd(iD, temp);
-    iD = psub(vmulq_lane_f32(D, vget_low_f32(dA), 0), iD);
-
-    // iA = A*|D| - B*D#*C
-    temp = shuffle(B, B, 0xA0);
-    temp = pmul(temp, shuffle(DC, DC, 0x44));
-    iA = shuffle(B, B, 0xF5);
-    iA = pmul(iA, shuffle(DC, DC, 0xEE));
-    iA = padd(iA, temp);
-    iA = psub(vmulq_lane_f32(A, vget_low_f32(dD), 0), iA);
-
-    // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
-    iB = pmul(D, shuffle(AB, AB, 0x33));
-    iB = psub(iB, pmul(shuffle(D, D, 0xB1), shuffle(AB, AB, 0x66)));
-    iB = psub(vmulq_lane_f32(C, vget_low_f32(dB), 0), iB);
-
-    // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
-    iC = pmul(A, shuffle(DC, DC, 0x33));
-    iC = psub(iC, pmul(shuffle(A, A, 0xB1), shuffle(DC, DC, 0x66)));
-    iC = psub(vmulq_lane_f32(B, vget_low_f32(dC), 0), iC);
-
-    const Packet4f coeff = {1.0, -1.0, -1.0, 1.0};
-    rd = pmul(vdupq_lane_f32(vget_low_f32(rd), 0), coeff);
-    iA = pmul(iA, rd);
-    iB = pmul(iB, rd);
-    iC = pmul(iC, rd);
-    iD = pmul(iD, rd);
-
-    Index res_stride = result.outerStride();
-    float *res = result.data();
-
-    pstoret<float, Packet4f, ResultAlignment>(res + 0, shuffle(iA, iB, 0x77));
-    pstoret<float, Packet4f, ResultAlignment>(res + res_stride, shuffle(iA, iB, 0x22));
-    pstoret<float, Packet4f, ResultAlignment>(res + 2 * res_stride, shuffle(iC, iD, 0x77));
-    pstoret<float, Packet4f, ResultAlignment>(res + 3 * res_stride, shuffle(iC, iD, 0x22));
-  }
-};
-
-#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG
-
-// same algorithm as above, except that each operand is split into
-// halves for two registers to hold.
-template <typename MatrixType, typename ResultType>
-struct compute_inverse_size4<Architecture::NEON, double, MatrixType, ResultType>
-{
-  enum
-  {
-    MatrixAlignment = traits<MatrixType>::Alignment,
-    ResultAlignment = traits<ResultType>::Alignment,
-    StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
-  };
-  typedef typename conditional<(MatrixType::Flags & LinearAccessBit),
-                               MatrixType const &,
-                               typename MatrixType::PlainObject>::type
-      ActualMatrixType;
-
-  // fuctionally equivalent to _mm_shuffle_pd in SSE (i.e. shuffle(m, n, mask) equals _mm_shuffle_pd(m,n,mask))
-  static Packet2d shuffle(const Packet2d &m, const Packet2d &n, int mask)
-  {
-    const double *a = reinterpret_cast<const double *>(&m);
-    const double *b = reinterpret_cast<const double *>(&n);
-    Packet2d res = {*(a + (mask & 1)), *(b + ((mask >> 1) & 1))};
-    return res;
-  }
-
-  static void run(const MatrixType &mat, ResultType &result)
-  {
-    ActualMatrixType matrix(mat);
-
-    // Four 2x2 sub-matrices of the input matrix, each is further divided into upper and lower
-    // row e.g. A1, upper row of A, A2, lower row of A
-    // input = [[A, B],  =  [[[A1, [B1,
-    //          [C, D]]        A2], B2]],
-    //                       [[C1, [D1,
-    //                         C2], D2]]]
-
-    Packet2d A1, A2, B1, B2, C1, C2, D1, D2;
-
-    if (StorageOrdersMatch)
-    {
-      A1 = matrix.template packet<MatrixAlignment>(0);
-      B1 = matrix.template packet<MatrixAlignment>(2);
-      A2 = matrix.template packet<MatrixAlignment>(4);
-      B2 = matrix.template packet<MatrixAlignment>(6);
-      C1 = matrix.template packet<MatrixAlignment>(8);
-      D1 = matrix.template packet<MatrixAlignment>(10);
-      C2 = matrix.template packet<MatrixAlignment>(12);
-      D2 = matrix.template packet<MatrixAlignment>(14);
-    }
-    else
-    {
-      Packet2d temp;
-      A1 = matrix.template packet<MatrixAlignment>(0);
-      C1 = matrix.template packet<MatrixAlignment>(2);
-      A2 = matrix.template packet<MatrixAlignment>(4);
-      C2 = matrix.template packet<MatrixAlignment>(6);
-
-      temp = A1;
-      A1 = shuffle(A1, A2, 0);
-      A2 = shuffle(temp, A2, 3);
-
-      temp = C1;
-      C1 = shuffle(C1, C2, 0);
-      C2 = shuffle(temp, C2, 3);
-
-      B1 = matrix.template packet<MatrixAlignment>(8);
-      D1 = matrix.template packet<MatrixAlignment>(10);
-      B2 = matrix.template packet<MatrixAlignment>(12);
-      D2 = matrix.template packet<MatrixAlignment>(14);
-
-      temp = B1;
-      B1 = shuffle(B1, B2, 0);
-      B2 = shuffle(temp, B2, 3);
-
-      temp = D1;
-      D1 = shuffle(D1, D2, 0);
-      D2 = shuffle(temp, D2, 3);
-    }
-
-    // determinants of the sub-matrices
-    Packet2d dA, dB, dC, dD;
-
-    dA = shuffle(A2, A2, 1);
-    dA = pmul(A1, dA);
-    dA = psub(dA, vdupq_laneq_f64(dA, 1));
-
-    dB = shuffle(B2, B2, 1);
-    dB = pmul(B1, dB);
-    dB = psub(dB, vdupq_laneq_f64(dB, 1));
-
-    dC = shuffle(C2, C2, 1);
-    dC = pmul(C1, dC);
-    dC = psub(dC, vdupq_laneq_f64(dC, 1));
-
-    dD = shuffle(D2, D2, 1);
-    dD = pmul(D1, dD);
-    dD = psub(dD, vdupq_laneq_f64(dD, 1));
-
-    Packet2d DC1, DC2, AB1, AB2;
-
-    // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
-    AB1 = pmul(B1, vdupq_laneq_f64(A2, 1));
-    AB2 = pmul(B2, vdupq_laneq_f64(A1, 0));
-    AB1 = psub(AB1, pmul(B2, vdupq_laneq_f64(A1, 1)));
-    AB2 = psub(AB2, pmul(B1, vdupq_laneq_f64(A2, 0)));
-
-    // DC = D#*C
-    DC1 = pmul(C1, vdupq_laneq_f64(D2, 1));
-    DC2 = pmul(C2, vdupq_laneq_f64(D1, 0));
-    DC1 = psub(DC1, pmul(C2, vdupq_laneq_f64(D1, 1)));
-    DC2 = psub(DC2, pmul(C1, vdupq_laneq_f64(D2, 0)));
-
-    Packet2d d1, d2;
-
-    // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
-    Packet2d det;
-
-    // reciprocal of the determinant of the input matrix, rd = 1/det
-    Packet2d rd;
-
-    d1 = pmul(AB1, shuffle(DC1, DC2, 0));
-    d2 = pmul(AB2, shuffle(DC1, DC2, 3));
-    rd = padd(d1, d2);
-    rd = padd(rd, vdupq_laneq_f64(rd, 1));
-
-    d1 = pmul(dA, dD);
-    d2 = pmul(dB, dC);
-
-    det = padd(d1, d2);
-    det = psub(det, rd);
-    det = vdupq_laneq_f64(det, 0);
-    rd = pdiv(vdupq_n_f64(float64_t(1.0)), det);
-
-    // rows of four sub-matrices of the inverse
-    Packet2d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2;
-
-    // iD = D*|A| - C*A#*B
-    iD1 = pmul(AB1, vdupq_laneq_f64(C1, 0));
-    iD2 = pmul(AB1, vdupq_laneq_f64(C2, 0));
-    iD1 = padd(iD1, pmul(AB2, vdupq_laneq_f64(C1, 1)));
-    iD2 = padd(iD2, pmul(AB2, vdupq_laneq_f64(C2, 1)));
-    dA = vdupq_laneq_f64(dA, 0);
-    iD1 = psub(pmul(D1, dA), iD1);
-    iD2 = psub(pmul(D2, dA), iD2);
-
-    // iA = A*|D| - B*D#*C
-    iA1 = pmul(DC1, vdupq_laneq_f64(B1, 0));
-    iA2 = pmul(DC1, vdupq_laneq_f64(B2, 0));
-    iA1 = padd(iA1, pmul(DC2, vdupq_laneq_f64(B1, 1)));
-    iA2 = padd(iA2, pmul(DC2, vdupq_laneq_f64(B2, 1)));
-    dD = vdupq_laneq_f64(dD, 0);
-    iA1 = psub(pmul(A1, dD), iA1);
-    iA2 = psub(pmul(A2, dD), iA2);
-
-    // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
-    iB1 = pmul(D1, shuffle(AB2, AB1, 1));
-    iB2 = pmul(D2, shuffle(AB2, AB1, 1));
-    iB1 = psub(iB1, pmul(shuffle(D1, D1, 1), shuffle(AB2, AB1, 2)));
-    iB2 = psub(iB2, pmul(shuffle(D2, D2, 1), shuffle(AB2, AB1, 2)));
-    dB = vdupq_laneq_f64(dB, 0);
-    iB1 = psub(pmul(C1, dB), iB1);
-    iB2 = psub(pmul(C2, dB), iB2);
-
-    // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
-    iC1 = pmul(A1, shuffle(DC2, DC1, 1));
-    iC2 = pmul(A2, shuffle(DC2, DC1, 1));
-    iC1 = psub(iC1, pmul(shuffle(A1, A1, 1), shuffle(DC2, DC1, 2)));
-    iC2 = psub(iC2, pmul(shuffle(A2, A2, 1), shuffle(DC2, DC1, 2)));
-    dC = vdupq_laneq_f64(dC, 0);
-    iC1 = psub(pmul(B1, dC), iC1);
-    iC2 = psub(pmul(B2, dC), iC2);
-
-    const Packet2d PN = {1.0, -1.0};
-    const Packet2d NP = {-1.0, 1.0};
-    d1 = pmul(PN, rd);
-    d2 = pmul(NP, rd);
-
-    Index res_stride = result.outerStride();
-    double *res = result.data();
-    pstoret<double, Packet2d, ResultAlignment>(res + 0, pmul(shuffle(iA2, iA1, 3), d1));
-    pstoret<double, Packet2d, ResultAlignment>(res + res_stride, pmul(shuffle(iA2, iA1, 0), d2));
-    pstoret<double, Packet2d, ResultAlignment>(res + 2, pmul(shuffle(iB2, iB1, 3), d1));
-    pstoret<double, Packet2d, ResultAlignment>(res + res_stride + 2, pmul(shuffle(iB2, iB1, 0), d2));
-    pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride, pmul(shuffle(iC2, iC1, 3), d1));
-    pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride, pmul(shuffle(iC2, iC1, 0), d2));
-    pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride + 2, pmul(shuffle(iD2, iD1, 3), d1));
-    pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride + 2, pmul(shuffle(iD2, iD1, 0), d2));
-  }
-};
-
-#endif  // EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG
-
-} // namespace internal
-} // namespace Eigen
-#endif
diff --git a/Eigen/src/LU/arch/Inverse_SSE.h b/Eigen/src/LU/arch/Inverse_SSE.h
deleted file mode 100644
index 4dce2ef..0000000
--- a/Eigen/src/LU/arch/Inverse_SSE.h
+++ /dev/null
@@ -1,338 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2001 Intel Corporation
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// The SSE code for the 4x4 float and double matrix inverse in this file
-// comes from the following Intel's library:
-// http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/
-//
-// Here is the respective copyright and license statement:
-//
-//   Copyright (c) 2001 Intel Corporation.
-//
-// Permition is granted to use, copy, distribute and prepare derivative works
-// of this library for any purpose and without fee, provided, that the above
-// copyright notice and this statement appear in all copies.
-// Intel makes no representations about the suitability of this software for
-// any purpose, and specifically disclaims all warranties.
-// See LEGAL.TXT for all the legal information.
-
-#ifndef EIGEN_INVERSE_SSE_H
-#define EIGEN_INVERSE_SSE_H
-
-namespace Eigen { 
-
-namespace internal {
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse_size4<Architecture::SSE, float, MatrixType, ResultType>
-{
-  enum {
-    MatrixAlignment     = traits<MatrixType>::Alignment,
-    ResultAlignment     = traits<ResultType>::Alignment,
-    StorageOrdersMatch  = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit)
-  };
-  typedef typename conditional<(MatrixType::Flags&LinearAccessBit),MatrixType const &,typename MatrixType::PlainObject>::type ActualMatrixType;
-  
-  static void run(const MatrixType& mat, ResultType& result)
-  {
-    ActualMatrixType matrix(mat);
-    const Packet4f p4f_sign_PNNP = _mm_castsi128_ps(_mm_set_epi32(0x00000000, 0x80000000, 0x80000000, 0x00000000));
-
-    // Load the full matrix into registers
-    __m128 _L1 = matrix.template packet<MatrixAlignment>( 0);
-    __m128 _L2 = matrix.template packet<MatrixAlignment>( 4);
-    __m128 _L3 = matrix.template packet<MatrixAlignment>( 8);
-    __m128 _L4 = matrix.template packet<MatrixAlignment>(12);
-
-    // The inverse is calculated using "Divide and Conquer" technique. The
-    // original matrix is divide into four 2x2 sub-matrices. Since each
-    // register holds four matrix element, the smaller matrices are
-    // represented as a registers. Hence we get a better locality of the
-    // calculations.
-
-    __m128 A, B, C, D; // the four sub-matrices
-    if(!StorageOrdersMatch)
-    {
-      A = _mm_unpacklo_ps(_L1, _L2);
-      B = _mm_unpacklo_ps(_L3, _L4);
-      C = _mm_unpackhi_ps(_L1, _L2);
-      D = _mm_unpackhi_ps(_L3, _L4);
-    }
-    else
-    {
-      A = _mm_movelh_ps(_L1, _L2);
-      B = _mm_movehl_ps(_L2, _L1);
-      C = _mm_movelh_ps(_L3, _L4);
-      D = _mm_movehl_ps(_L4, _L3);
-    }
-
-    __m128 iA, iB, iC, iD,                 // partial inverse of the sub-matrices
-            DC, AB;
-    __m128 dA, dB, dC, dD;                 // determinant of the sub-matrices
-    __m128 det, d, d1, d2;
-    __m128 rd;                             // reciprocal of the determinant
-
-    //  AB = A# * B
-    AB = _mm_mul_ps(_mm_shuffle_ps(A,A,0x0F), B);
-    AB = _mm_sub_ps(AB,_mm_mul_ps(_mm_shuffle_ps(A,A,0xA5), _mm_shuffle_ps(B,B,0x4E)));
-    //  DC = D# * C
-    DC = _mm_mul_ps(_mm_shuffle_ps(D,D,0x0F), C);
-    DC = _mm_sub_ps(DC,_mm_mul_ps(_mm_shuffle_ps(D,D,0xA5), _mm_shuffle_ps(C,C,0x4E)));
-
-    //  dA = |A|
-    dA = _mm_mul_ps(_mm_shuffle_ps(A, A, 0x5F),A);
-    dA = _mm_sub_ss(dA, _mm_movehl_ps(dA,dA));
-    //  dB = |B|
-    dB = _mm_mul_ps(_mm_shuffle_ps(B, B, 0x5F),B);
-    dB = _mm_sub_ss(dB, _mm_movehl_ps(dB,dB));
-
-    //  dC = |C|
-    dC = _mm_mul_ps(_mm_shuffle_ps(C, C, 0x5F),C);
-    dC = _mm_sub_ss(dC, _mm_movehl_ps(dC,dC));
-    //  dD = |D|
-    dD = _mm_mul_ps(_mm_shuffle_ps(D, D, 0x5F),D);
-    dD = _mm_sub_ss(dD, _mm_movehl_ps(dD,dD));
-
-    //  d = trace(AB*DC) = trace(A#*B*D#*C)
-    d = _mm_mul_ps(_mm_shuffle_ps(DC,DC,0xD8),AB);
-
-    //  iD = C*A#*B
-    iD = _mm_mul_ps(_mm_shuffle_ps(C,C,0xA0), _mm_movelh_ps(AB,AB));
-    iD = _mm_add_ps(iD,_mm_mul_ps(_mm_shuffle_ps(C,C,0xF5), _mm_movehl_ps(AB,AB)));
-    //  iA = B*D#*C
-    iA = _mm_mul_ps(_mm_shuffle_ps(B,B,0xA0), _mm_movelh_ps(DC,DC));
-    iA = _mm_add_ps(iA,_mm_mul_ps(_mm_shuffle_ps(B,B,0xF5), _mm_movehl_ps(DC,DC)));
-
-    //  d = trace(AB*DC) = trace(A#*B*D#*C) [continue]
-    d  = _mm_add_ps(d, _mm_movehl_ps(d, d));
-    d  = _mm_add_ss(d, _mm_shuffle_ps(d, d, 1));
-    d1 = _mm_mul_ss(dA,dD);
-    d2 = _mm_mul_ss(dB,dC);
-
-    //  iD = D*|A| - C*A#*B
-    iD = _mm_sub_ps(_mm_mul_ps(D,_mm_shuffle_ps(dA,dA,0)), iD);
-
-    //  iA = A*|D| - B*D#*C;
-    iA = _mm_sub_ps(_mm_mul_ps(A,_mm_shuffle_ps(dD,dD,0)), iA);
-
-    //  det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C)
-    det = _mm_sub_ss(_mm_add_ss(d1,d2),d);
-    rd  = _mm_div_ss(_mm_set_ss(1.0f), det);
-
-//     #ifdef ZERO_SINGULAR
-//         rd = _mm_and_ps(_mm_cmpneq_ss(det,_mm_setzero_ps()), rd);
-//     #endif
-
-    //  iB = D * (A#B)# = D*B#*A
-    iB = _mm_mul_ps(D, _mm_shuffle_ps(AB,AB,0x33));
-    iB = _mm_sub_ps(iB, _mm_mul_ps(_mm_shuffle_ps(D,D,0xB1), _mm_shuffle_ps(AB,AB,0x66)));
-    //  iC = A * (D#C)# = A*C#*D
-    iC = _mm_mul_ps(A, _mm_shuffle_ps(DC,DC,0x33));
-    iC = _mm_sub_ps(iC, _mm_mul_ps(_mm_shuffle_ps(A,A,0xB1), _mm_shuffle_ps(DC,DC,0x66)));
-
-    rd = _mm_shuffle_ps(rd,rd,0);
-    rd = _mm_xor_ps(rd, p4f_sign_PNNP);
-
-    //  iB = C*|B| - D*B#*A
-    iB = _mm_sub_ps(_mm_mul_ps(C,_mm_shuffle_ps(dB,dB,0)), iB);
-
-    //  iC = B*|C| - A*C#*D;
-    iC = _mm_sub_ps(_mm_mul_ps(B,_mm_shuffle_ps(dC,dC,0)), iC);
-
-    //  iX = iX / det
-    iA = _mm_mul_ps(rd,iA);
-    iB = _mm_mul_ps(rd,iB);
-    iC = _mm_mul_ps(rd,iC);
-    iD = _mm_mul_ps(rd,iD);
-
-    Index res_stride = result.outerStride();
-    float* res = result.data();
-    pstoret<float, Packet4f, ResultAlignment>(res+0,            _mm_shuffle_ps(iA,iB,0x77));
-    pstoret<float, Packet4f, ResultAlignment>(res+res_stride,   _mm_shuffle_ps(iA,iB,0x22));
-    pstoret<float, Packet4f, ResultAlignment>(res+2*res_stride, _mm_shuffle_ps(iC,iD,0x77));
-    pstoret<float, Packet4f, ResultAlignment>(res+3*res_stride, _mm_shuffle_ps(iC,iD,0x22));
-  }
-
-};
-
-template<typename MatrixType, typename ResultType>
-struct compute_inverse_size4<Architecture::SSE, double, MatrixType, ResultType>
-{
-  enum {
-    MatrixAlignment     = traits<MatrixType>::Alignment,
-    ResultAlignment     = traits<ResultType>::Alignment,
-    StorageOrdersMatch  = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit)
-  };
-  typedef typename conditional<(MatrixType::Flags&LinearAccessBit),MatrixType const &,typename MatrixType::PlainObject>::type ActualMatrixType;
-  
-  static void run(const MatrixType& mat, ResultType& result)
-  {
-    ActualMatrixType matrix(mat);
-    const __m128d _Sign_NP = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0));
-    const __m128d _Sign_PN = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
-
-    // The inverse is calculated using "Divide and Conquer" technique. The
-    // original matrix is divide into four 2x2 sub-matrices. Since each
-    // register of the matrix holds two elements, the smaller matrices are
-    // consisted of two registers. Hence we get a better locality of the
-    // calculations.
-
-    // the four sub-matrices
-    __m128d A1, A2, B1, B2, C1, C2, D1, D2;
-    
-    if(StorageOrdersMatch)
-    {
-      A1 = matrix.template packet<MatrixAlignment>( 0); B1 = matrix.template packet<MatrixAlignment>( 2);
-      A2 = matrix.template packet<MatrixAlignment>( 4); B2 = matrix.template packet<MatrixAlignment>( 6);
-      C1 = matrix.template packet<MatrixAlignment>( 8); D1 = matrix.template packet<MatrixAlignment>(10);
-      C2 = matrix.template packet<MatrixAlignment>(12); D2 = matrix.template packet<MatrixAlignment>(14);
-    }
-    else
-    {
-      __m128d tmp;
-      A1 = matrix.template packet<MatrixAlignment>( 0); C1 = matrix.template packet<MatrixAlignment>( 2);
-      A2 = matrix.template packet<MatrixAlignment>( 4); C2 = matrix.template packet<MatrixAlignment>( 6);
-      tmp = A1;
-      A1 = _mm_unpacklo_pd(A1,A2);
-      A2 = _mm_unpackhi_pd(tmp,A2);
-      tmp = C1;
-      C1 = _mm_unpacklo_pd(C1,C2);
-      C2 = _mm_unpackhi_pd(tmp,C2);
-      
-      B1 = matrix.template packet<MatrixAlignment>( 8); D1 = matrix.template packet<MatrixAlignment>(10);
-      B2 = matrix.template packet<MatrixAlignment>(12); D2 = matrix.template packet<MatrixAlignment>(14);
-      tmp = B1;
-      B1 = _mm_unpacklo_pd(B1,B2);
-      B2 = _mm_unpackhi_pd(tmp,B2);
-      tmp = D1;
-      D1 = _mm_unpacklo_pd(D1,D2);
-      D2 = _mm_unpackhi_pd(tmp,D2);
-    }
-    
-    __m128d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2,     // partial invese of the sub-matrices
-            DC1, DC2, AB1, AB2;
-    __m128d dA, dB, dC, dD;     // determinant of the sub-matrices
-    __m128d det, d1, d2, rd;
-
-    //  dA = |A|
-    dA = _mm_shuffle_pd(A2, A2, 1);
-    dA = _mm_mul_pd(A1, dA);
-    dA = _mm_sub_sd(dA, _mm_shuffle_pd(dA,dA,3));
-    //  dB = |B|
-    dB = _mm_shuffle_pd(B2, B2, 1);
-    dB = _mm_mul_pd(B1, dB);
-    dB = _mm_sub_sd(dB, _mm_shuffle_pd(dB,dB,3));
-
-    //  AB = A# * B
-    AB1 = _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,3));
-    AB2 = _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,0));
-    AB1 = _mm_sub_pd(AB1, _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,3)));
-    AB2 = _mm_sub_pd(AB2, _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,0)));
-
-    //  dC = |C|
-    dC = _mm_shuffle_pd(C2, C2, 1);
-    dC = _mm_mul_pd(C1, dC);
-    dC = _mm_sub_sd(dC, _mm_shuffle_pd(dC,dC,3));
-    //  dD = |D|
-    dD = _mm_shuffle_pd(D2, D2, 1);
-    dD = _mm_mul_pd(D1, dD);
-    dD = _mm_sub_sd(dD, _mm_shuffle_pd(dD,dD,3));
-
-    //  DC = D# * C
-    DC1 = _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,3));
-    DC2 = _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,0));
-    DC1 = _mm_sub_pd(DC1, _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,3)));
-    DC2 = _mm_sub_pd(DC2, _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,0)));
-
-    //  rd = trace(AB*DC) = trace(A#*B*D#*C)
-    d1 = _mm_mul_pd(AB1, _mm_shuffle_pd(DC1, DC2, 0));
-    d2 = _mm_mul_pd(AB2, _mm_shuffle_pd(DC1, DC2, 3));
-    rd = _mm_add_pd(d1, d2);
-    rd = _mm_add_sd(rd, _mm_shuffle_pd(rd, rd,3));
-
-    //  iD = C*A#*B
-    iD1 = _mm_mul_pd(AB1, _mm_shuffle_pd(C1,C1,0));
-    iD2 = _mm_mul_pd(AB1, _mm_shuffle_pd(C2,C2,0));
-    iD1 = _mm_add_pd(iD1, _mm_mul_pd(AB2, _mm_shuffle_pd(C1,C1,3)));
-    iD2 = _mm_add_pd(iD2, _mm_mul_pd(AB2, _mm_shuffle_pd(C2,C2,3)));
-
-    //  iA = B*D#*C
-    iA1 = _mm_mul_pd(DC1, _mm_shuffle_pd(B1,B1,0));
-    iA2 = _mm_mul_pd(DC1, _mm_shuffle_pd(B2,B2,0));
-    iA1 = _mm_add_pd(iA1, _mm_mul_pd(DC2, _mm_shuffle_pd(B1,B1,3)));
-    iA2 = _mm_add_pd(iA2, _mm_mul_pd(DC2, _mm_shuffle_pd(B2,B2,3)));
-
-    //  iD = D*|A| - C*A#*B
-    dA = _mm_shuffle_pd(dA,dA,0);
-    iD1 = _mm_sub_pd(_mm_mul_pd(D1, dA), iD1);
-    iD2 = _mm_sub_pd(_mm_mul_pd(D2, dA), iD2);
-
-    //  iA = A*|D| - B*D#*C;
-    dD = _mm_shuffle_pd(dD,dD,0);
-    iA1 = _mm_sub_pd(_mm_mul_pd(A1, dD), iA1);
-    iA2 = _mm_sub_pd(_mm_mul_pd(A2, dD), iA2);
-
-    d1 = _mm_mul_sd(dA, dD);
-    d2 = _mm_mul_sd(dB, dC);
-
-    //  iB = D * (A#B)# = D*B#*A
-    iB1 = _mm_mul_pd(D1, _mm_shuffle_pd(AB2,AB1,1));
-    iB2 = _mm_mul_pd(D2, _mm_shuffle_pd(AB2,AB1,1));
-    iB1 = _mm_sub_pd(iB1, _mm_mul_pd(_mm_shuffle_pd(D1,D1,1), _mm_shuffle_pd(AB2,AB1,2)));
-    iB2 = _mm_sub_pd(iB2, _mm_mul_pd(_mm_shuffle_pd(D2,D2,1), _mm_shuffle_pd(AB2,AB1,2)));
-
-    //  det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C)
-    det = _mm_add_sd(d1, d2);
-    det = _mm_sub_sd(det, rd);
-
-    //  iC = A * (D#C)# = A*C#*D
-    iC1 = _mm_mul_pd(A1, _mm_shuffle_pd(DC2,DC1,1));
-    iC2 = _mm_mul_pd(A2, _mm_shuffle_pd(DC2,DC1,1));
-    iC1 = _mm_sub_pd(iC1, _mm_mul_pd(_mm_shuffle_pd(A1,A1,1), _mm_shuffle_pd(DC2,DC1,2)));
-    iC2 = _mm_sub_pd(iC2, _mm_mul_pd(_mm_shuffle_pd(A2,A2,1), _mm_shuffle_pd(DC2,DC1,2)));
-
-    rd = _mm_div_sd(_mm_set_sd(1.0), det);
-//     #ifdef ZERO_SINGULAR
-//         rd = _mm_and_pd(_mm_cmpneq_sd(det,_mm_setzero_pd()), rd);
-//     #endif
-    rd = _mm_shuffle_pd(rd,rd,0);
-
-    //  iB = C*|B| - D*B#*A
-    dB = _mm_shuffle_pd(dB,dB,0);
-    iB1 = _mm_sub_pd(_mm_mul_pd(C1, dB), iB1);
-    iB2 = _mm_sub_pd(_mm_mul_pd(C2, dB), iB2);
-
-    d1 = _mm_xor_pd(rd, _Sign_PN);
-    d2 = _mm_xor_pd(rd, _Sign_NP);
-
-    //  iC = B*|C| - A*C#*D;
-    dC = _mm_shuffle_pd(dC,dC,0);
-    iC1 = _mm_sub_pd(_mm_mul_pd(B1, dC), iC1);
-    iC2 = _mm_sub_pd(_mm_mul_pd(B2, dC), iC2);
-
-    Index res_stride = result.outerStride();
-    double* res = result.data();
-    pstoret<double, Packet2d, ResultAlignment>(res+0,             _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1));
-    pstoret<double, Packet2d, ResultAlignment>(res+res_stride,    _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2));
-    pstoret<double, Packet2d, ResultAlignment>(res+2,             _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1));
-    pstoret<double, Packet2d, ResultAlignment>(res+res_stride+2,  _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2));
-    pstoret<double, Packet2d, ResultAlignment>(res+2*res_stride,  _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1));
-    pstoret<double, Packet2d, ResultAlignment>(res+3*res_stride,  _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2));
-    pstoret<double, Packet2d, ResultAlignment>(res+2*res_stride+2,_mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1));
-    pstoret<double, Packet2d, ResultAlignment>(res+3*res_stride+2,_mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2));
-  }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_INVERSE_SSE_H