blob: 408f30856eb1d768a67a4e5d760bd3bb5d799ff6 [file] [log] [blame]
#include <iostream>
#include <Eigen/Geometry>
#include <bench/BenchTimer.h>
using namespace Eigen;
using namespace std;
template <typename Q>
EIGEN_DONT_INLINE Q nlerp(const Q& a, const Q& b, typename Q::Scalar t) {
return Q((a.coeffs() * (1.0 - t) + b.coeffs() * t).normalized());
}
template <typename Q>
EIGEN_DONT_INLINE Q slerp_eigen(const Q& a, const Q& b, typename Q::Scalar t) {
return a.slerp(t, b);
}
template <typename Q>
EIGEN_DONT_INLINE Q slerp_legacy(const Q& a, const Q& b, typename Q::Scalar t) {
typedef typename Q::Scalar Scalar;
static const Scalar one = Scalar(1) - dummy_precision<Scalar>();
Scalar d = a.dot(b);
Scalar absD = internal::abs(d);
if (absD >= one) return a;
// theta is the angle between the 2 quaternions
Scalar theta = std::acos(absD);
Scalar sinTheta = internal::sin(theta);
Scalar scale0 = internal::sin((Scalar(1) - t) * theta) / sinTheta;
Scalar scale1 = internal::sin((t * theta)) / sinTheta;
if (d < 0) scale1 = -scale1;
return Q(scale0 * a.coeffs() + scale1 * b.coeffs());
}
template <typename Q>
EIGEN_DONT_INLINE Q slerp_legacy_nlerp(const Q& a, const Q& b, typename Q::Scalar t) {
typedef typename Q::Scalar Scalar;
static const Scalar one = Scalar(1) - epsilon<Scalar>();
Scalar d = a.dot(b);
Scalar absD = internal::abs(d);
Scalar scale0;
Scalar scale1;
if (absD >= one) {
scale0 = Scalar(1) - t;
scale1 = t;
} else {
// theta is the angle between the 2 quaternions
Scalar theta = std::acos(absD);
Scalar sinTheta = internal::sin(theta);
scale0 = internal::sin((Scalar(1) - t) * theta) / sinTheta;
scale1 = internal::sin((t * theta)) / sinTheta;
if (d < 0) scale1 = -scale1;
}
return Q(scale0 * a.coeffs() + scale1 * b.coeffs());
}
template <typename T>
inline T sin_over_x(T x) {
if (T(1) + x * x == T(1))
return T(1);
else
return std::sin(x) / x;
}
template <typename Q>
EIGEN_DONT_INLINE Q slerp_rw(const Q& a, const Q& b, typename Q::Scalar t) {
typedef typename Q::Scalar Scalar;
Scalar d = a.dot(b);
Scalar theta;
if (d < 0.0)
theta = /*M_PI -*/ Scalar(2) * std::asin((a.coeffs() + b.coeffs()).norm() / 2);
else
theta = Scalar(2) * std::asin((a.coeffs() - b.coeffs()).norm() / 2);
// theta is the angle between the 2 quaternions
// Scalar theta = std::acos(absD);
Scalar sinOverTheta = sin_over_x(theta);
Scalar scale0 = (Scalar(1) - t) * sin_over_x((Scalar(1) - t) * theta) / sinOverTheta;
Scalar scale1 = t * sin_over_x((t * theta)) / sinOverTheta;
if (d < 0) scale1 = -scale1;
return Quaternion<Scalar>(scale0 * a.coeffs() + scale1 * b.coeffs());
}
template <typename Q>
EIGEN_DONT_INLINE Q slerp_gael(const Q& a, const Q& b, typename Q::Scalar t) {
typedef typename Q::Scalar Scalar;
Scalar d = a.dot(b);
Scalar theta;
// theta = Scalar(2) * atan2((a.coeffs()-b.coeffs()).norm(),(a.coeffs()+b.coeffs()).norm());
// if (d<0.0)
// theta = M_PI-theta;
if (d < 0.0)
theta = /*M_PI -*/ Scalar(2) * std::asin((-a.coeffs() - b.coeffs()).norm() / 2);
else
theta = Scalar(2) * std::asin((a.coeffs() - b.coeffs()).norm() / 2);
Scalar scale0;
Scalar scale1;
if (theta * theta - Scalar(6) == -Scalar(6)) {
scale0 = Scalar(1) - t;
scale1 = t;
} else {
Scalar sinTheta = std::sin(theta);
scale0 = internal::sin((Scalar(1) - t) * theta) / sinTheta;
scale1 = internal::sin((t * theta)) / sinTheta;
if (d < 0) scale1 = -scale1;
}
return Quaternion<Scalar>(scale0 * a.coeffs() + scale1 * b.coeffs());
}
int main() {
typedef double RefScalar;
typedef float TestScalar;
typedef Quaternion<RefScalar> Qd;
typedef Quaternion<TestScalar> Qf;
unsigned int g_seed = (unsigned int)time(NULL);
std::cout << g_seed << "\n";
// g_seed = 1259932496;
srand(g_seed);
Matrix<RefScalar, Dynamic, 1> maxerr(7);
maxerr.setZero();
Matrix<RefScalar, Dynamic, 1> avgerr(7);
avgerr.setZero();
cout << "double=>float=>double nlerp eigen legacy(snap) legacy(nlerp) rightway "
" gael's criteria\n";
int rep = 100;
int iters = 40;
for (int w = 0; w < rep; ++w) {
Qf a, b;
a.coeffs().setRandom();
a.normalize();
b.coeffs().setRandom();
b.normalize();
Qf c[6];
Qd ar(a.cast<RefScalar>());
Qd br(b.cast<RefScalar>());
Qd cr;
cout.precision(8);
cout << std::scientific;
for (int i = 0; i < iters; ++i) {
RefScalar t = 0.65;
cr = slerp_rw(ar, br, t);
Qf refc = cr.cast<TestScalar>();
c[0] = nlerp(a, b, t);
c[1] = slerp_eigen(a, b, t);
c[2] = slerp_legacy(a, b, t);
c[3] = slerp_legacy_nlerp(a, b, t);
c[4] = slerp_rw(a, b, t);
c[5] = slerp_gael(a, b, t);
VectorXd err(7);
err[0] = (cr.coeffs() - refc.cast<RefScalar>().coeffs()).norm();
// std::cout << err[0] << " ";
for (int k = 0; k < 6; ++k) {
err[k + 1] = (c[k].coeffs() - refc.coeffs()).norm();
// std::cout << err[k+1] << " ";
}
maxerr = maxerr.cwise().max(err);
avgerr += err;
// std::cout << "\n";
b = cr.cast<TestScalar>();
br = cr;
}
// std::cout << "\n";
}
avgerr /= RefScalar(rep * iters);
cout << "\n\nAccuracy:\n"
<< " max: " << maxerr.transpose() << "\n";
cout << " avg: " << avgerr.transpose() << "\n";
// perf bench
Quaternionf a, b;
a.coeffs().setRandom();
a.normalize();
b.coeffs().setRandom();
b.normalize();
// b = a;
float s = 0.65;
#define BENCH(FUNC) \
{ \
BenchTimer t; \
for (int k = 0; k < 2; ++k) { \
t.start(); \
for (int i = 0; i < 1000000; ++i) FUNC(a, b, s); \
t.stop(); \
} \
cout << " " << #FUNC << " => \t " << t.value() << "s\n"; \
}
cout << "\nSpeed:\n" << std::fixed;
BENCH(nlerp);
BENCH(slerp_eigen);
BENCH(slerp_legacy);
BENCH(slerp_legacy_nlerp);
BENCH(slerp_rw);
BENCH(slerp_gael);
}