| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) Essex Edwards <essex.edwards@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_RUNTIME_NO_MALLOC |
| |
| #include "main.h" |
| #include <unsupported/Eigen/NNLS> |
| |
| /// Check that 'x' solves the NNLS optimization problem `min ||A*x-b|| s.t. 0 <= x`. |
| /// The \p tolerance parameter is the absolute tolerance on the gradient, A'*(A*x-b). |
| template <typename MatrixType, typename VectorB, typename VectorX, typename Scalar> |
| void verify_nnls_optimality(const MatrixType &A, const VectorB &b, const VectorX &x, const Scalar tolerance) { |
| // The NNLS optimality conditions are: |
| // |
| // * 0 = A'*A*x - A'*b - lambda |
| // * 0 <= x[i] \forall i |
| // * 0 <= lambda[i] \forall i |
| // * 0 = x[i]*lambda[i] \forall i |
| // |
| // we don't know lambda, but by assuming the first optimality condition is true, |
| // we can derive it and then check the others conditions. |
| const VectorX lambda = A.transpose() * (A * x - b); |
| |
| // NNLS solutions are EXACTLY not negative. |
| VERIFY_LE(0, x.minCoeff()); |
| |
| // Exact lambda would be non-negative, but computed lambda might leak a little |
| VERIFY_LE(-tolerance, lambda.minCoeff()); |
| |
| // x[i]*lambda[i] == 0 <~~> (x[i]==0) || (lambda[i] is small) |
| VERIFY(((x.array() == Scalar(0)) || (lambda.array() <= tolerance)).all()); |
| } |
| |
| template <typename MatrixType, typename VectorB, typename VectorX> |
| void test_nnls_known_solution(const MatrixType &A, const VectorB &b, const VectorX &x_expected) { |
| using Scalar = typename MatrixType::Scalar; |
| |
| using std::sqrt; |
| const Scalar tolerance = sqrt(Eigen::GenericNumTraits<Scalar>::epsilon()); |
| Index max_iter = 5 * A.cols(); // A heuristic guess. |
| NNLS<MatrixType> nnls(A, max_iter, tolerance); |
| const VectorX x = nnls.solve(b); |
| |
| VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); |
| VERIFY_IS_APPROX(x, x_expected); |
| verify_nnls_optimality(A, b, x, tolerance); |
| } |
| |
| template <typename MatrixType> |
| void test_nnls_random_problem(const MatrixType &) { |
| // |
| // SETUP |
| // |
| |
| Index cols = MatrixType::ColsAtCompileTime; |
| if (cols == Dynamic) cols = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); |
| Index rows = MatrixType::RowsAtCompileTime; |
| if (rows == Dynamic) rows = internal::random<Index>(cols, EIGEN_TEST_MAX_SIZE); |
| VERIFY_LE(cols, rows); // To have a unique LS solution: cols <= rows. |
| |
| // Make some sort of random test problem from a wide range of scales and condition numbers. |
| using std::pow; |
| using Scalar = typename MatrixType::Scalar; |
| const Scalar sqrtConditionNumber = pow(Scalar(10), internal::random<Scalar>(Scalar(0), Scalar(2))); |
| const Scalar scaleA = pow(Scalar(10), internal::random<Scalar>(Scalar(-3), Scalar(3))); |
| const Scalar minSingularValue = scaleA / sqrtConditionNumber; |
| const Scalar maxSingularValue = scaleA * sqrtConditionNumber; |
| MatrixType A(rows, cols); |
| generateRandomMatrixSvs(setupRangeSvs<Matrix<Scalar, Dynamic, 1>>(cols, minSingularValue, maxSingularValue), rows, |
| cols, A); |
| |
| // Make a random RHS also with a random scaling. |
| using VectorB = decltype(A.col(0).eval()); |
| const Scalar scaleB = pow(Scalar(10), internal::random<Scalar>(Scalar(-3), Scalar(3))); |
| const VectorB b = scaleB * VectorB::Random(A.rows()); |
| |
| // |
| // ACT |
| // |
| |
| using Scalar = typename MatrixType::Scalar; |
| using std::sqrt; |
| const Scalar tolerance = |
| sqrt(Eigen::GenericNumTraits<Scalar>::epsilon()) * b.cwiseAbs().maxCoeff() * A.cwiseAbs().maxCoeff(); |
| Index max_iter = 5 * A.cols(); // A heuristic guess. |
| NNLS<MatrixType> nnls(A, max_iter, tolerance); |
| const typename NNLS<MatrixType>::SolutionVectorType &x = nnls.solve(b); |
| |
| // |
| // VERIFY |
| // |
| |
| // In fact, NNLS can fail on some problems, but they are rare in practice. |
| VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); |
| verify_nnls_optimality(A, b, x, tolerance); |
| } |
| |
| void test_nnls_handles_zero_rhs() { |
| // |
| // SETUP |
| // |
| const Index cols = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); |
| const Index rows = internal::random<Index>(cols, EIGEN_TEST_MAX_SIZE); |
| const MatrixXd A = MatrixXd::Random(rows, cols); |
| const VectorXd b = VectorXd::Zero(rows); |
| |
| // |
| // ACT |
| // |
| NNLS<MatrixXd> nnls(A); |
| const VectorXd x = nnls.solve(b); |
| |
| // |
| // VERIFY |
| // |
| VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); |
| VERIFY_LE(nnls.iterations(), 1); // 0 or 1 would be be fine for an edge case like this. |
| VERIFY_IS_EQUAL(x, VectorXd::Zero(cols)); |
| } |
| |
| void test_nnls_handles_Mx0_matrix() { |
| // |
| // SETUP |
| // |
| const Index rows = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); |
| const MatrixXd A(rows, 0); |
| const VectorXd b = VectorXd::Random(rows); |
| |
| // |
| // ACT |
| // |
| NNLS<MatrixXd> nnls(A); |
| const VectorXd x = nnls.solve(b); |
| |
| // |
| // VERIFY |
| // |
| VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); |
| VERIFY_LE(nnls.iterations(), 0); |
| VERIFY_IS_EQUAL(x.size(), 0); |
| } |
| |
| void test_nnls_handles_0x0_matrix() { |
| // |
| // SETUP |
| // |
| const MatrixXd A(0, 0); |
| const VectorXd b(0); |
| |
| // |
| // ACT |
| // |
| NNLS<MatrixXd> nnls(A); |
| const VectorXd x = nnls.solve(b); |
| |
| // |
| // VERIFY |
| // |
| VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); |
| VERIFY_LE(nnls.iterations(), 0); |
| VERIFY_IS_EQUAL(x.size(), 0); |
| } |
| |
| void test_nnls_handles_dependent_columns() { |
| // |
| // SETUP |
| // |
| const Index rank = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE / 2); |
| const Index cols = 2 * rank; |
| const Index rows = internal::random<Index>(cols, EIGEN_TEST_MAX_SIZE); |
| const MatrixXd A = MatrixXd::Random(rows, rank) * MatrixXd::Random(rank, cols); |
| const VectorXd b = VectorXd::Random(rows); |
| |
| // |
| // ACT |
| // |
| const double tolerance = 1e-8; |
| NNLS<MatrixXd> nnls(A); |
| const VectorXd &x = nnls.solve(b); |
| |
| // |
| // VERIFY |
| // |
| // What should happen when the input 'A' has dependent columns? |
| // We might still succeed. Or we might not converge. |
| // Either outcome is fine. If Success is indicated, |
| // then 'x' must actually be a solution vector. |
| |
| if (nnls.info() == ComputationInfo::Success) { |
| verify_nnls_optimality(A, b, x, tolerance); |
| } |
| } |
| |
| void test_nnls_handles_wide_matrix() { |
| // |
| // SETUP |
| // |
| const Index cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE); |
| const Index rows = internal::random<Index>(2, cols - 1); |
| const MatrixXd A = MatrixXd::Random(rows, cols); |
| const VectorXd b = VectorXd::Random(rows); |
| |
| // |
| // ACT |
| // |
| const double tolerance = 1e-8; |
| NNLS<MatrixXd> nnls(A); |
| const VectorXd &x = nnls.solve(b); |
| |
| // |
| // VERIFY |
| // |
| // What should happen when the input 'A' is wide? |
| // The unconstrained least-squares problem has infinitely many solutions. |
| // Subject the the non-negativity constraints, |
| // the solution might actually be unique (e.g. it is [0,0,..,0]). |
| // So, NNLS might succeed or it might fail. |
| // Either outcome is fine. If Success is indicated, |
| // then 'x' must actually be a solution vector. |
| |
| if (nnls.info() == ComputationInfo::Success) { |
| verify_nnls_optimality(A, b, x, tolerance); |
| } |
| } |
| |
| // 4x2 problem, unconstrained solution positive |
| void test_nnls_known_1() { |
| Matrix<double, 4, 2> A(4, 2); |
| Matrix<double, 4, 1> b(4); |
| Matrix<double, 2, 1> x(2); |
| A << 1, 1, 2, 4, 3, 9, 4, 16; |
| b << 0.6, 2.2, 4.8, 8.4; |
| x << 0.1, 0.5; |
| |
| return test_nnls_known_solution(A, b, x); |
| } |
| |
| // 4x3 problem, unconstrained solution positive |
| void test_nnls_known_2() { |
| Matrix<double, 4, 3> A(4, 3); |
| Matrix<double, 4, 1> b(4); |
| Matrix<double, 3, 1> x(3); |
| |
| A << 1, 1, 1, 2, 4, 8, 3, 9, 27, 4, 16, 64; |
| b << 0.73, 3.24, 8.31, 16.72; |
| x << 0.1, 0.5, 0.13; |
| |
| test_nnls_known_solution(A, b, x); |
| } |
| |
| // Simple 4x4 problem, unconstrained solution non-negative |
| void test_nnls_known_3() { |
| Matrix<double, 4, 4> A(4, 4); |
| Matrix<double, 4, 1> b(4); |
| Matrix<double, 4, 1> x(4); |
| |
| A << 1, 1, 1, 1, 2, 4, 8, 16, 3, 9, 27, 81, 4, 16, 64, 256; |
| b << 0.73, 3.24, 8.31, 16.72; |
| x << 0.1, 0.5, 0.13, 0; |
| |
| test_nnls_known_solution(A, b, x); |
| } |
| |
| // Simple 4x3 problem, unconstrained solution non-negative |
| void test_nnls_known_4() { |
| Matrix<double, 4, 3> A(4, 3); |
| Matrix<double, 4, 1> b(4); |
| Matrix<double, 3, 1> x(3); |
| |
| A << 1, 1, 1, 2, 4, 8, 3, 9, 27, 4, 16, 64; |
| b << 0.23, 1.24, 3.81, 8.72; |
| x << 0.1, 0, 0.13; |
| |
| test_nnls_known_solution(A, b, x); |
| } |
| |
| // Simple 4x3 problem, unconstrained solution indefinite |
| void test_nnls_known_5() { |
| Matrix<double, 4, 3> A(4, 3); |
| Matrix<double, 4, 1> b(4); |
| Matrix<double, 3, 1> x(3); |
| |
| A << 1, 1, 1, 2, 4, 8, 3, 9, 27, 4, 16, 64; |
| b << 0.13, 0.84, 2.91, 7.12; |
| // Solution obtained by original nnls() implementation in Fortran |
| x << 0.0, 0.0, 0.1106544; |
| |
| test_nnls_known_solution(A, b, x); |
| } |
| |
| void test_nnls_small_reference_problems() { |
| test_nnls_known_1(); |
| test_nnls_known_2(); |
| test_nnls_known_3(); |
| test_nnls_known_4(); |
| test_nnls_known_5(); |
| } |
| |
| void test_nnls_with_half_precision() { |
| // The random matrix generation tools don't work with `half`, |
| // so here's a simpler setup mostly just to check that NNLS compiles & runs with custom scalar types. |
| |
| using Mat = Matrix<half, 8, 2>; |
| using VecB = Matrix<half, 8, 1>; |
| using VecX = Matrix<half, 2, 1>; |
| Mat A = Mat::Random(); // full-column rank with high probability. |
| VecB b = VecB::Random(); |
| |
| NNLS<Mat> nnls(A, 20, half(1e-2f)); |
| const VecX x = nnls.solve(b); |
| |
| VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); |
| verify_nnls_optimality(A, b, x, half(1e-1)); |
| } |
| |
| void test_nnls_special_case_solves_in_zero_iterations() { |
| // The particular NNLS algorithm that is implemented starts with all variables |
| // in the active set. |
| // This test builds a system where all constraints are active at the solution, |
| // so that initial guess is already correct. |
| // |
| // If the implementation changes to another algorithm that does not have this property, |
| // then this test will need to change (e.g. starting from all constraints inactive, |
| // or using ADMM, or an interior point solver). |
| |
| const Index n = 10; |
| const Index m = 3 * n; |
| const VectorXd b = VectorXd::Random(m); |
| // With high probability, this is full column rank, which we need for uniqueness. |
| MatrixXd A = MatrixXd::Random(m, n); |
| // Make every column of `A` such that adding it to the active set only /increases/ the objective, |
| // this ensuring the NNLS solution is all zeros. |
| const VectorXd alignment = -(A.transpose() * b).cwiseSign(); |
| A = A * alignment.asDiagonal(); |
| |
| NNLS<MatrixXd> nnls(A); |
| nnls.solve(b); |
| |
| VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); |
| VERIFY(nnls.iterations() == 0); |
| } |
| |
| void test_nnls_special_case_solves_in_n_iterations() { |
| // The particular NNLS algorithm that is implemented starts with all variables |
| // in the active set and then adds one variable to the inactive set each iteration. |
| // This test builds a system where all variables are inactive at the solution, |
| // so it should take 'n' iterations to get there. |
| // |
| // If the implementation changes to another algorithm that does not have this property, |
| // then this test will need to change (e.g. starting from all constraints inactive, |
| // or using ADMM, or an interior point solver). |
| |
| const Index n = 10; |
| const Index m = 3 * n; |
| // With high probability, this is full column rank, which we need for uniqueness. |
| const MatrixXd A = MatrixXd::Random(m, n); |
| const VectorXd x = VectorXd::Random(n).cwiseAbs().array() + 1; // all positive. |
| const VectorXd b = A * x; |
| |
| NNLS<MatrixXd> nnls(A); |
| nnls.solve(b); |
| |
| VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); |
| VERIFY(nnls.iterations() == n); |
| } |
| |
| void test_nnls_returns_NoConvergence_when_maxIterations_is_too_low() { |
| // Using the special case that takes `n` iterations, |
| // from `test_nnls_special_case_solves_in_n_iterations`, |
| // we can set max iterations too low and that should cause the solve to fail. |
| |
| const Index n = 10; |
| const Index m = 3 * n; |
| // With high probability, this is full column rank, which we need for uniqueness. |
| const MatrixXd A = MatrixXd::Random(m, n); |
| const VectorXd x = VectorXd::Random(n).cwiseAbs().array() + 1; // all positive. |
| const VectorXd b = A * x; |
| |
| NNLS<MatrixXd> nnls(A); |
| const Index max_iters = n - 1; |
| nnls.setMaxIterations(max_iters); |
| nnls.solve(b); |
| |
| VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::NoConvergence); |
| VERIFY(nnls.iterations() == max_iters); |
| } |
| |
| void test_nnls_default_maxIterations_is_twice_column_count() { |
| const Index cols = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); |
| const Index rows = internal::random<Index>(cols, EIGEN_TEST_MAX_SIZE); |
| const MatrixXd A = MatrixXd::Random(rows, cols); |
| |
| NNLS<MatrixXd> nnls(A); |
| |
| VERIFY_IS_EQUAL(nnls.maxIterations(), 2 * cols); |
| } |
| |
| void test_nnls_does_not_allocate_during_solve() { |
| const Index cols = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); |
| const Index rows = internal::random<Index>(cols, EIGEN_TEST_MAX_SIZE); |
| const MatrixXd A = MatrixXd::Random(rows, cols); |
| const VectorXd b = VectorXd::Random(rows); |
| |
| NNLS<MatrixXd> nnls(A); |
| |
| internal::set_is_malloc_allowed(false); |
| nnls.solve(b); |
| internal::set_is_malloc_allowed(true); |
| } |
| |
| void test_nnls_repeated_calls_to_compute_and_solve() { |
| const Index cols2 = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); |
| const Index rows2 = internal::random<Index>(cols2, EIGEN_TEST_MAX_SIZE); |
| const MatrixXd A2 = MatrixXd::Random(rows2, cols2); |
| const VectorXd b2 = VectorXd::Random(rows2); |
| |
| NNLS<MatrixXd> nnls; |
| |
| for (int i = 0; i < 4; ++i) { |
| const Index cols = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); |
| const Index rows = internal::random<Index>(cols, EIGEN_TEST_MAX_SIZE); |
| const MatrixXd A = MatrixXd::Random(rows, cols); |
| |
| nnls.compute(A); |
| VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); |
| |
| for (int j = 0; j < 3; ++j) { |
| const VectorXd b = VectorXd::Random(rows); |
| const VectorXd x = nnls.solve(b); |
| VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); |
| verify_nnls_optimality(A, b, x, 1e-4); |
| } |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(NNLS) { |
| // Small matrices with known solutions: |
| CALL_SUBTEST_1(test_nnls_small_reference_problems()); |
| CALL_SUBTEST_1(test_nnls_handles_Mx0_matrix()); |
| CALL_SUBTEST_1(test_nnls_handles_0x0_matrix()); |
| |
| for (int i = 0; i < g_repeat; i++) { |
| // Essential NNLS properties, across different types. |
| CALL_SUBTEST_2(test_nnls_random_problem(MatrixXf())); |
| CALL_SUBTEST_3(test_nnls_random_problem(MatrixXd())); |
| CALL_SUBTEST_4(test_nnls_random_problem(Matrix<double, 12, 5>())); |
| CALL_SUBTEST_5(test_nnls_with_half_precision()); |
| |
| // Robustness tests: |
| CALL_SUBTEST_6(test_nnls_handles_zero_rhs()); |
| CALL_SUBTEST_6(test_nnls_handles_dependent_columns()); |
| CALL_SUBTEST_6(test_nnls_handles_wide_matrix()); |
| |
| // Properties specific to the implementation, |
| // not NNLS in general. |
| CALL_SUBTEST_7(test_nnls_special_case_solves_in_zero_iterations()); |
| CALL_SUBTEST_7(test_nnls_special_case_solves_in_n_iterations()); |
| CALL_SUBTEST_7(test_nnls_returns_NoConvergence_when_maxIterations_is_too_low()); |
| CALL_SUBTEST_7(test_nnls_default_maxIterations_is_twice_column_count()); |
| CALL_SUBTEST_8(test_nnls_repeated_calls_to_compute_and_solve()); |
| |
| // This test fails. It hits allocations in HouseholderSequence.h |
| // test_nnls_does_not_allocate_during_solve(); |
| } |
| } |