| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_DOT_H |
| #define EIGEN_DOT_H |
| |
| /*************************************************************************** |
| * Part 1 : the logic deciding a strategy for vectorization and unrolling |
| ***************************************************************************/ |
| |
| template<typename Derived1, typename Derived2> |
| struct ei_dot_traits |
| { |
| public: |
| enum { |
| Vectorization = (int(Derived1::Flags)&int(Derived2::Flags)&ActualPacketAccessBit) |
| && (int(Derived1::Flags)&int(Derived2::Flags)&LinearAccessBit) |
| ? LinearVectorization |
| : NoVectorization |
| }; |
| |
| private: |
| typedef typename Derived1::Scalar Scalar; |
| enum { |
| PacketSize = ei_packet_traits<Scalar>::size, |
| Cost = Derived1::SizeAtCompileTime * (Derived1::CoeffReadCost + Derived2::CoeffReadCost + NumTraits<Scalar>::MulCost) |
| + (Derived1::SizeAtCompileTime-1) * NumTraits<Scalar>::AddCost, |
| UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize)) |
| }; |
| |
| public: |
| enum { |
| Unrolling = Cost <= UnrollingLimit |
| ? CompleteUnrolling |
| : NoUnrolling |
| }; |
| }; |
| |
| /*************************************************************************** |
| * Part 2 : unrollers |
| ***************************************************************************/ |
| |
| /*** no vectorization ***/ |
| |
| template<typename Derived1, typename Derived2, int Start, int Length> |
| struct ei_dot_novec_unroller |
| { |
| enum { |
| HalfLength = Length/2 |
| }; |
| |
| typedef typename Derived1::Scalar Scalar; |
| |
| inline static Scalar run(const Derived1& v1, const Derived2& v2) |
| { |
| return ei_dot_novec_unroller<Derived1, Derived2, Start, HalfLength>::run(v1, v2) |
| + ei_dot_novec_unroller<Derived1, Derived2, Start+HalfLength, Length-HalfLength>::run(v1, v2); |
| } |
| }; |
| |
| template<typename Derived1, typename Derived2, int Start> |
| struct ei_dot_novec_unroller<Derived1, Derived2, Start, 1> |
| { |
| typedef typename Derived1::Scalar Scalar; |
| |
| inline static Scalar run(const Derived1& v1, const Derived2& v2) |
| { |
| return v1.coeff(Start) * ei_conj(v2.coeff(Start)); |
| } |
| }; |
| |
| /*** vectorization ***/ |
| |
| template<typename Derived1, typename Derived2, int Index, int Stop, |
| bool LastPacket = (Stop-Index == ei_packet_traits<typename Derived1::Scalar>::size)> |
| struct ei_dot_vec_unroller |
| { |
| typedef typename Derived1::Scalar Scalar; |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| |
| enum { |
| row1 = Derived1::RowsAtCompileTime == 1 ? 0 : Index, |
| col1 = Derived1::RowsAtCompileTime == 1 ? Index : 0, |
| row2 = Derived2::RowsAtCompileTime == 1 ? 0 : Index, |
| col2 = Derived2::RowsAtCompileTime == 1 ? Index : 0 |
| }; |
| |
| inline static PacketScalar run(const Derived1& v1, const Derived2& v2) |
| { |
| return ei_pmadd( |
| v1.template packet<Aligned>(row1, col1), |
| v2.template packet<Aligned>(row2, col2), |
| ei_dot_vec_unroller<Derived1, Derived2, Index+ei_packet_traits<Scalar>::size, Stop>::run(v1, v2) |
| ); |
| } |
| }; |
| |
| template<typename Derived1, typename Derived2, int Index, int Stop> |
| struct ei_dot_vec_unroller<Derived1, Derived2, Index, Stop, true> |
| { |
| enum { |
| row1 = Derived1::RowsAtCompileTime == 1 ? 0 : Index, |
| col1 = Derived1::RowsAtCompileTime == 1 ? Index : 0, |
| row2 = Derived2::RowsAtCompileTime == 1 ? 0 : Index, |
| col2 = Derived2::RowsAtCompileTime == 1 ? Index : 0, |
| alignment1 = (Derived1::Flags & AlignedBit) ? Aligned : Unaligned, |
| alignment2 = (Derived2::Flags & AlignedBit) ? Aligned : Unaligned |
| }; |
| |
| typedef typename Derived1::Scalar Scalar; |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| |
| inline static PacketScalar run(const Derived1& v1, const Derived2& v2) |
| { |
| return ei_pmul(v1.template packet<alignment1>(row1, col1), v2.template packet<alignment2>(row2, col2)); |
| } |
| }; |
| |
| /*************************************************************************** |
| * Part 3 : implementation of all cases |
| ***************************************************************************/ |
| |
| template<typename Derived1, typename Derived2, |
| int Vectorization = ei_dot_traits<Derived1, Derived2>::Vectorization, |
| int Unrolling = ei_dot_traits<Derived1, Derived2>::Unrolling |
| > |
| struct ei_dot_impl; |
| |
| template<typename Derived1, typename Derived2> |
| struct ei_dot_impl<Derived1, Derived2, NoVectorization, NoUnrolling> |
| { |
| typedef typename Derived1::Scalar Scalar; |
| static Scalar run(const Derived1& v1, const Derived2& v2) |
| { |
| ei_assert(v1.size()>0 && "you are using a non initialized vector"); |
| Scalar res; |
| res = v1.coeff(0) * ei_conj(v2.coeff(0)); |
| for(int i = 1; i < v1.size(); ++i) |
| res += v1.coeff(i) * ei_conj(v2.coeff(i)); |
| return res; |
| } |
| }; |
| |
| template<typename Derived1, typename Derived2> |
| struct ei_dot_impl<Derived1, Derived2, NoVectorization, CompleteUnrolling> |
| : public ei_dot_novec_unroller<Derived1, Derived2, 0, Derived1::SizeAtCompileTime> |
| {}; |
| |
| template<typename Derived1, typename Derived2> |
| struct ei_dot_impl<Derived1, Derived2, LinearVectorization, NoUnrolling> |
| { |
| typedef typename Derived1::Scalar Scalar; |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| |
| static Scalar run(const Derived1& v1, const Derived2& v2) |
| { |
| const int size = v1.size(); |
| const int packetSize = ei_packet_traits<Scalar>::size; |
| const int alignedSize = (size/packetSize)*packetSize; |
| enum { |
| alignment1 = (Derived1::Flags & AlignedBit) ? Aligned : Unaligned, |
| alignment2 = (Derived2::Flags & AlignedBit) ? Aligned : Unaligned |
| }; |
| Scalar res; |
| |
| // do the vectorizable part of the sum |
| if(size >= packetSize) |
| { |
| PacketScalar packet_res = ei_pmul( |
| v1.template packet<alignment1>(0), |
| v2.template packet<alignment2>(0) |
| ); |
| for(int index = packetSize; index<alignedSize; index += packetSize) |
| { |
| packet_res = ei_pmadd( |
| v1.template packet<alignment1>(index), |
| v2.template packet<alignment2>(index), |
| packet_res |
| ); |
| } |
| res = ei_predux(packet_res); |
| |
| // now we must do the rest without vectorization. |
| if(alignedSize == size) return res; |
| } |
| else // too small to vectorize anything. |
| // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. |
| { |
| res = Scalar(0); |
| } |
| |
| // do the remainder of the vector |
| for(int index = alignedSize; index < size; ++index) |
| { |
| res += v1.coeff(index) * v2.coeff(index); |
| } |
| |
| return res; |
| } |
| }; |
| |
| template<typename Derived1, typename Derived2> |
| struct ei_dot_impl<Derived1, Derived2, LinearVectorization, CompleteUnrolling> |
| { |
| typedef typename Derived1::Scalar Scalar; |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| enum { |
| PacketSize = ei_packet_traits<Scalar>::size, |
| Size = Derived1::SizeAtCompileTime, |
| VectorizationSize = (Size / PacketSize) * PacketSize |
| }; |
| static Scalar run(const Derived1& v1, const Derived2& v2) |
| { |
| Scalar res = ei_predux(ei_dot_vec_unroller<Derived1, Derived2, 0, VectorizationSize>::run(v1, v2)); |
| if (VectorizationSize != Size) |
| res += ei_dot_novec_unroller<Derived1, Derived2, VectorizationSize, Size-VectorizationSize>::run(v1, v2); |
| return res; |
| } |
| }; |
| |
| /*************************************************************************** |
| * Part 4 : implementation of MatrixBase methods |
| ***************************************************************************/ |
| |
| /** \returns the dot product of *this with other. |
| * |
| * \only_for_vectors |
| * |
| * \note If the scalar type is complex numbers, then this function returns the hermitian |
| * (sesquilinear) dot product, linear in the first variable and conjugate-linear in the |
| * second variable. |
| * |
| * \sa squaredNorm(), norm() |
| */ |
| template<typename Derived> |
| template<typename OtherDerived> |
| typename ei_traits<Derived>::Scalar |
| MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
| EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) |
| EIGEN_STATIC_ASSERT((ei_is_same_type<Scalar, typename OtherDerived::Scalar>::ret), |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| |
| ei_assert(size() == other.size()); |
| |
| // dot() must honor EvalBeforeNestingBit (eg: v.dot(M*v) ) |
| typedef typename ei_cleantype<typename Derived::Nested>::type ThisNested; |
| typedef typename ei_cleantype<typename OtherDerived::Nested>::type OtherNested; |
| return ei_dot_impl<ThisNested, OtherNested>::run(derived(), other.derived()); |
| } |
| |
| /** \returns the squared \em l2 norm of *this, i.e., for vectors, the dot product of *this with itself. |
| * |
| * \sa dot(), norm() |
| */ |
| template<typename Derived> |
| inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const |
| { |
| return ei_real((*this).cwise().abs2().sum()); |
| } |
| |
| /** \returns the \em l2 norm of *this, i.e., for vectors, the square root of the dot product of *this with itself. |
| * |
| * \sa dot(), squaredNorm() |
| */ |
| template<typename Derived> |
| inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const |
| { |
| return ei_sqrt(squaredNorm()); |
| } |
| |
| /** \returns the \em l2 norm of \c *this using a numerically more stable |
| * algorithm. |
| * |
| * \sa norm(), dot(), squaredNorm() |
| */ |
| template<typename Derived> |
| inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real |
| MatrixBase<Derived>::stableNorm() const |
| { |
| return this->cwise().abs().redux(ei_scalar_hypot_op<RealScalar>()); |
| } |
| |
| /** \returns an expression of the quotient of *this by its own norm. |
| * |
| * \only_for_vectors |
| * |
| * \sa norm(), normalize() |
| */ |
| template<typename Derived> |
| inline const typename MatrixBase<Derived>::PlainMatrixType |
| MatrixBase<Derived>::normalized() const |
| { |
| typedef typename ei_nested<Derived>::type Nested; |
| typedef typename ei_unref<Nested>::type _Nested; |
| _Nested n(derived()); |
| return n / n.norm(); |
| } |
| |
| /** Normalizes the vector, i.e. divides it by its own norm. |
| * |
| * \only_for_vectors |
| * |
| * \sa norm(), normalized() |
| */ |
| template<typename Derived> |
| inline void MatrixBase<Derived>::normalize() |
| { |
| *this /= norm(); |
| } |
| |
| /** \returns true if *this is approximately orthogonal to \a other, |
| * within the precision given by \a prec. |
| * |
| * Example: \include MatrixBase_isOrthogonal.cpp |
| * Output: \verbinclude MatrixBase_isOrthogonal.out |
| */ |
| template<typename Derived> |
| template<typename OtherDerived> |
| bool MatrixBase<Derived>::isOrthogonal |
| (const MatrixBase<OtherDerived>& other, RealScalar prec) const |
| { |
| typename ei_nested<Derived,2>::type nested(derived()); |
| typename ei_nested<OtherDerived,2>::type otherNested(other.derived()); |
| return ei_abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm(); |
| } |
| |
| /** \returns true if *this is approximately an unitary matrix, |
| * within the precision given by \a prec. In the case where the \a Scalar |
| * type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. |
| * |
| * \note This can be used to check whether a family of vectors forms an orthonormal basis. |
| * Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an |
| * orthonormal basis. |
| * |
| * Example: \include MatrixBase_isUnitary.cpp |
| * Output: \verbinclude MatrixBase_isUnitary.out |
| */ |
| template<typename Derived> |
| bool MatrixBase<Derived>::isUnitary(RealScalar prec) const |
| { |
| typename Derived::Nested nested(derived()); |
| for(int i = 0; i < cols(); ++i) |
| { |
| if(!ei_isApprox(nested.col(i).squaredNorm(), static_cast<Scalar>(1), prec)) |
| return false; |
| for(int j = 0; j < i; ++j) |
| if(!ei_isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec)) |
| return false; |
| } |
| return true; |
| } |
| #endif // EIGEN_DOT_H |