blob: 9748167a5a080a60673e19324bfa9794571d26ba [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PRODUCTBASE_H
#define EIGEN_PRODUCTBASE_H
namespace Eigen {
/** \class ProductBase
* \ingroup Core_Module
*
*/
namespace internal {
template<typename Derived, typename _Lhs, typename _Rhs>
struct traits<ProductBase<Derived,_Lhs,_Rhs> >
{
typedef MatrixXpr XprKind;
typedef typename remove_all<_Lhs>::type Lhs;
typedef typename remove_all<_Rhs>::type Rhs;
typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
typename traits<Rhs>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
enum {
RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
| EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
// Note that EvalBeforeNestingBit and NestByRefBit
// are not used in practice because nested is overloaded for products
CoeffReadCost = 0 // FIXME why is it needed ?
};
};
}
#define EIGEN_PRODUCT_PUBLIC_INTERFACE(Derived) \
typedef ProductBase<Derived, Lhs, Rhs > Base; \
EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \
typedef typename Base::LhsNested LhsNested; \
typedef typename Base::_LhsNested _LhsNested; \
typedef typename Base::LhsBlasTraits LhsBlasTraits; \
typedef typename Base::ActualLhsType ActualLhsType; \
typedef typename Base::_ActualLhsType _ActualLhsType; \
typedef typename Base::RhsNested RhsNested; \
typedef typename Base::_RhsNested _RhsNested; \
typedef typename Base::RhsBlasTraits RhsBlasTraits; \
typedef typename Base::ActualRhsType ActualRhsType; \
typedef typename Base::_ActualRhsType _ActualRhsType; \
using Base::m_lhs; \
using Base::m_rhs;
template<typename Derived, typename Lhs, typename Rhs>
class ProductBase : public MatrixBase<Derived>
{
public:
typedef MatrixBase<Derived> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ProductBase)
typedef typename Lhs::Nested LhsNested;
typedef typename internal::remove_all<LhsNested>::type _LhsNested;
typedef internal::blas_traits<_LhsNested> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef typename internal::remove_all<ActualLhsType>::type _ActualLhsType;
typedef typename internal::traits<Lhs>::Scalar LhsScalar;
typedef typename Rhs::Nested RhsNested;
typedef typename internal::remove_all<RhsNested>::type _RhsNested;
typedef internal::blas_traits<_RhsNested> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef typename internal::remove_all<ActualRhsType>::type _ActualRhsType;
typedef typename internal::traits<Rhs>::Scalar RhsScalar;
// Diagonal of a product: no need to evaluate the arguments because they are going to be evaluated only once
typedef CoeffBasedProduct<LhsNested, RhsNested, 0> FullyLazyCoeffBaseProductType;
public:
typedef typename Base::PlainObject PlainObject;
ProductBase(const Lhs& a_lhs, const Rhs& a_rhs)
: m_lhs(a_lhs), m_rhs(a_rhs)
{
eigen_assert(a_lhs.cols() == a_rhs.rows()
&& "invalid matrix product"
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
}
inline Index rows() const { return m_lhs.rows(); }
inline Index cols() const { return m_rhs.cols(); }
template<typename Dest>
inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst,Scalar(1)); }
template<typename Dest>
inline void addTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(1)); }
template<typename Dest>
inline void subTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(-1)); }
template<typename Dest>
inline void scaleAndAddTo(Dest& dst,Scalar alpha) const { derived().scaleAndAddTo(dst,alpha); }
const _LhsNested& lhs() const { return m_lhs; }
const _RhsNested& rhs() const { return m_rhs; }
// Implicit conversion to the nested type (trigger the evaluation of the product)
operator const PlainObject& () const
{
m_result.resize(m_lhs.rows(), m_rhs.cols());
derived().evalTo(m_result);
return m_result;
}
const Diagonal<const FullyLazyCoeffBaseProductType,0> diagonal() const
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
template<int Index>
const Diagonal<FullyLazyCoeffBaseProductType,Index> diagonal() const
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
const Diagonal<FullyLazyCoeffBaseProductType,Dynamic> diagonal(Index index) const
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); }
// restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isnt a Lvalue expression
typename Base::CoeffReturnType coeff(Index row, Index col) const
{
#ifdef EIGEN2_SUPPORT
return lhs().row(row).cwiseProduct(rhs().col(col).transpose()).sum();
#else
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
Matrix<Scalar,1,1> result = *this;
return result.coeff(row,col);
#endif
}
typename Base::CoeffReturnType coeff(Index i) const
{
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
Matrix<Scalar,1,1> result = *this;
return result.coeff(i);
}
const Scalar& coeffRef(Index row, Index col) const
{
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
return derived().coeffRef(row,col);
}
const Scalar& coeffRef(Index i) const
{
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
return derived().coeffRef(i);
}
protected:
LhsNested m_lhs;
RhsNested m_rhs;
mutable PlainObject m_result;
};
// here we need to overload the nested rule for products
// such that the nested type is a const reference to a plain matrix
namespace internal {
template<typename Lhs, typename Rhs, int Mode, int N, typename PlainObject>
struct nested<GeneralProduct<Lhs,Rhs,Mode>, N, PlainObject>
{
typedef PlainObject const& type;
};
}
template<typename NestedProduct>
class ScaledProduct;
// Note that these two operator* functions are not defined as member
// functions of ProductBase, because, otherwise we would have to
// define all overloads defined in MatrixBase. Furthermore, Using
// "using Base::operator*" would not work with MSVC.
//
// Also note that here we accept any compatible scalar types
template<typename Derived,typename Lhs,typename Rhs>
const ScaledProduct<Derived>
operator*(const ProductBase<Derived,Lhs,Rhs>& prod, typename Derived::Scalar x)
{ return ScaledProduct<Derived>(prod.derived(), x); }
template<typename Derived,typename Lhs,typename Rhs>
typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
const ScaledProduct<Derived> >::type
operator*(const ProductBase<Derived,Lhs,Rhs>& prod, const typename Derived::RealScalar& x)
{ return ScaledProduct<Derived>(prod.derived(), x); }
template<typename Derived,typename Lhs,typename Rhs>
const ScaledProduct<Derived>
operator*(typename Derived::Scalar x,const ProductBase<Derived,Lhs,Rhs>& prod)
{ return ScaledProduct<Derived>(prod.derived(), x); }
template<typename Derived,typename Lhs,typename Rhs>
typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
const ScaledProduct<Derived> >::type
operator*(const typename Derived::RealScalar& x,const ProductBase<Derived,Lhs,Rhs>& prod)
{ return ScaledProduct<Derived>(prod.derived(), x); }
namespace internal {
template<typename NestedProduct>
struct traits<ScaledProduct<NestedProduct> >
: traits<ProductBase<ScaledProduct<NestedProduct>,
typename NestedProduct::_LhsNested,
typename NestedProduct::_RhsNested> >
{
typedef typename traits<NestedProduct>::StorageKind StorageKind;
};
}
template<typename NestedProduct>
class ScaledProduct
: public ProductBase<ScaledProduct<NestedProduct>,
typename NestedProduct::_LhsNested,
typename NestedProduct::_RhsNested>
{
public:
typedef ProductBase<ScaledProduct<NestedProduct>,
typename NestedProduct::_LhsNested,
typename NestedProduct::_RhsNested> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::PlainObject PlainObject;
// EIGEN_PRODUCT_PUBLIC_INTERFACE(ScaledProduct)
ScaledProduct(const NestedProduct& prod, Scalar x)
: Base(prod.lhs(),prod.rhs()), m_prod(prod), m_alpha(x) {}
template<typename Dest>
inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst, Scalar(1)); }
template<typename Dest>
inline void addTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(1)); }
template<typename Dest>
inline void subTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(-1)); }
template<typename Dest>
inline void scaleAndAddTo(Dest& dst,Scalar a_alpha) const { m_prod.derived().scaleAndAddTo(dst,a_alpha * m_alpha); }
const Scalar& alpha() const { return m_alpha; }
protected:
const NestedProduct& m_prod;
Scalar m_alpha;
};
/** \internal
* Overloaded to perform an efficient C = (A*B).lazy() */
template<typename Derived>
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& MatrixBase<Derived>::lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{
other.derived().evalTo(derived());
return derived();
}
} // end namespace Eigen
#endif // EIGEN_PRODUCTBASE_H