blob: 6e06ace44a01990e521de68197270e96da927d98 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
// Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*****************************************************************************
*** Platform checks for aligned malloc functions ***
*****************************************************************************/
#ifndef EIGEN_MEMORY_H
#define EIGEN_MEMORY_H
// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
// http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
// This is true at least since glibc 2.8.
// This leaves the question how to detect 64-bit. According to this document,
// http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
// quite safe, at least within the context of glibc, to equate 64-bit with LP64.
#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
&& defined(__LP64__)
#define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
#else
#define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
#endif
// FreeBSD 6 seems to have 16-byte aligned malloc
// See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
// See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
#if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
#define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
#else
#define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
#endif
#if defined(__APPLE__) \
|| defined(_WIN64) \
|| EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
|| EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
#define EIGEN_MALLOC_ALREADY_ALIGNED 1
#else
#define EIGEN_MALLOC_ALREADY_ALIGNED 0
#endif
#if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) \
&& (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
#define EIGEN_HAS_POSIX_MEMALIGN 1
#else
#define EIGEN_HAS_POSIX_MEMALIGN 0
#endif
#ifdef EIGEN_VECTORIZE_SSE
#define EIGEN_HAS_MM_MALLOC 1
#else
#define EIGEN_HAS_MM_MALLOC 0
#endif
namespace Eigen {
namespace internal {
inline void throw_std_bad_alloc()
{
#ifdef EIGEN_EXCEPTIONS
throw std::bad_alloc();
#else
std::size_t huge = -1;
new int[huge];
#endif
}
/*****************************************************************************
*** Implementation of handmade aligned functions ***
*****************************************************************************/
/* ----- Hand made implementations of aligned malloc/free and realloc ----- */
/** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
* Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
*/
inline void* handmade_aligned_malloc(size_t size)
{
void *original = std::malloc(size+16);
if (original == 0) return 0;
void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
*(reinterpret_cast<void**>(aligned) - 1) = original;
return aligned;
}
/** \internal Frees memory allocated with handmade_aligned_malloc */
inline void handmade_aligned_free(void *ptr)
{
if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
}
/** \internal
* \brief Reallocates aligned memory.
* Since we know that our handmade version is based on std::realloc
* we can use std::realloc to implement efficient reallocation.
*/
inline void* handmade_aligned_realloc(void* ptr, size_t size, size_t = 0)
{
if (ptr == 0) return handmade_aligned_malloc(size);
void *original = *(reinterpret_cast<void**>(ptr) - 1);
original = std::realloc(original,size+16);
if (original == 0) return 0;
void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
*(reinterpret_cast<void**>(aligned) - 1) = original;
return aligned;
}
/*****************************************************************************
*** Implementation of generic aligned realloc (when no realloc can be used)***
*****************************************************************************/
void* aligned_malloc(size_t size);
void aligned_free(void *ptr);
/** \internal
* \brief Reallocates aligned memory.
* Allows reallocation with aligned ptr types. This implementation will
* always create a new memory chunk and copy the old data.
*/
inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
{
if (ptr==0)
return aligned_malloc(size);
if (size==0)
{
aligned_free(ptr);
return 0;
}
void* newptr = aligned_malloc(size);
if (newptr == 0)
{
#ifdef EIGEN_HAS_ERRNO
errno = ENOMEM; // according to the standard
#endif
return 0;
}
if (ptr != 0)
{
std::memcpy(newptr, ptr, (std::min)(size,old_size));
aligned_free(ptr);
}
return newptr;
}
/*****************************************************************************
*** Implementation of portable aligned versions of malloc/free/realloc ***
*****************************************************************************/
#ifdef EIGEN_NO_MALLOC
inline void check_that_malloc_is_allowed()
{
eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
}
#elif defined EIGEN_RUNTIME_NO_MALLOC
inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
{
static bool value = true;
if (update == 1)
value = new_value;
return value;
}
inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
inline void check_that_malloc_is_allowed()
{
eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
}
#else
inline void check_that_malloc_is_allowed()
{}
#endif
/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment.
* On allocation error, the returned pointer is null, and std::bad_alloc is thrown.
*/
inline void* aligned_malloc(size_t size)
{
check_that_malloc_is_allowed();
void *result;
#if !EIGEN_ALIGN
result = std::malloc(size);
#elif EIGEN_MALLOC_ALREADY_ALIGNED
result = std::malloc(size);
#elif EIGEN_HAS_POSIX_MEMALIGN
if(posix_memalign(&result, 16, size)) result = 0;
#elif EIGEN_HAS_MM_MALLOC
result = _mm_malloc(size, 16);
#elif (defined _MSC_VER)
result = _aligned_malloc(size, 16);
#else
result = handmade_aligned_malloc(size);
#endif
if(!result && size)
throw_std_bad_alloc();
return result;
}
/** \internal Frees memory allocated with aligned_malloc. */
inline void aligned_free(void *ptr)
{
#if !EIGEN_ALIGN
std::free(ptr);
#elif EIGEN_MALLOC_ALREADY_ALIGNED
std::free(ptr);
#elif EIGEN_HAS_POSIX_MEMALIGN
std::free(ptr);
#elif EIGEN_HAS_MM_MALLOC
_mm_free(ptr);
#elif defined(_MSC_VER)
_aligned_free(ptr);
#else
handmade_aligned_free(ptr);
#endif
}
/**
* \internal
* \brief Reallocates an aligned block of memory.
* \throws std::bad_alloc on allocation failure
**/
inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
{
EIGEN_UNUSED_VARIABLE(old_size);
void *result;
#if !EIGEN_ALIGN
result = std::realloc(ptr,new_size);
#elif EIGEN_MALLOC_ALREADY_ALIGNED
result = std::realloc(ptr,new_size);
#elif EIGEN_HAS_POSIX_MEMALIGN
result = generic_aligned_realloc(ptr,new_size,old_size);
#elif EIGEN_HAS_MM_MALLOC
// The defined(_mm_free) is just here to verify that this MSVC version
// implements _mm_malloc/_mm_free based on the corresponding _aligned_
// functions. This may not always be the case and we just try to be safe.
#if defined(_MSC_VER) && defined(_mm_free)
result = _aligned_realloc(ptr,new_size,16);
#else
result = generic_aligned_realloc(ptr,new_size,old_size);
#endif
#elif defined(_MSC_VER)
result = _aligned_realloc(ptr,new_size,16);
#else
result = handmade_aligned_realloc(ptr,new_size,old_size);
#endif
if (!result && new_size)
throw_std_bad_alloc();
return result;
}
/*****************************************************************************
*** Implementation of conditionally aligned functions ***
*****************************************************************************/
/** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
* On allocation error, the returned pointer is null, and a std::bad_alloc is thrown.
*/
template<bool Align> inline void* conditional_aligned_malloc(size_t size)
{
return aligned_malloc(size);
}
template<> inline void* conditional_aligned_malloc<false>(size_t size)
{
check_that_malloc_is_allowed();
void *result = std::malloc(size);
if(!result && size)
throw_std_bad_alloc();
return result;
}
/** \internal Frees memory allocated with conditional_aligned_malloc */
template<bool Align> inline void conditional_aligned_free(void *ptr)
{
aligned_free(ptr);
}
template<> inline void conditional_aligned_free<false>(void *ptr)
{
std::free(ptr);
}
template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
{
return aligned_realloc(ptr, new_size, old_size);
}
template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
{
return std::realloc(ptr, new_size);
}
/*****************************************************************************
*** Construction/destruction of array elements ***
*****************************************************************************/
/** \internal Constructs the elements of an array.
* The \a size parameter tells on how many objects to call the constructor of T.
*/
template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
{
for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
return ptr;
}
/** \internal Destructs the elements of an array.
* The \a size parameters tells on how many objects to call the destructor of T.
*/
template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
{
// always destruct an array starting from the end.
if(ptr)
while(size) ptr[--size].~T();
}
/*****************************************************************************
*** Implementation of aligned new/delete-like functions ***
*****************************************************************************/
template<typename T>
EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
{
if(size > size_t(-1) / sizeof(T))
throw_std_bad_alloc();
}
/** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
* On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown.
* The default constructor of T is called.
*/
template<typename T> inline T* aligned_new(size_t size)
{
check_size_for_overflow<T>(size);
T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
return construct_elements_of_array(result, size);
}
template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
{
check_size_for_overflow<T>(size);
T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
return construct_elements_of_array(result, size);
}
/** \internal Deletes objects constructed with aligned_new
* The \a size parameters tells on how many objects to call the destructor of T.
*/
template<typename T> inline void aligned_delete(T *ptr, size_t size)
{
destruct_elements_of_array<T>(ptr, size);
aligned_free(ptr);
}
/** \internal Deletes objects constructed with conditional_aligned_new
* The \a size parameters tells on how many objects to call the destructor of T.
*/
template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
{
destruct_elements_of_array<T>(ptr, size);
conditional_aligned_free<Align>(ptr);
}
template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
{
check_size_for_overflow<T>(new_size);
check_size_for_overflow<T>(old_size);
if(new_size < old_size)
destruct_elements_of_array(pts+new_size, old_size-new_size);
T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
if(new_size > old_size)
construct_elements_of_array(result+old_size, new_size-old_size);
return result;
}
template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
{
check_size_for_overflow<T>(size);
T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
if(NumTraits<T>::RequireInitialization)
construct_elements_of_array(result, size);
return result;
}
template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
{
check_size_for_overflow<T>(new_size);
check_size_for_overflow<T>(old_size);
if(NumTraits<T>::RequireInitialization && (new_size < old_size))
destruct_elements_of_array(pts+new_size, old_size-new_size);
T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
if(NumTraits<T>::RequireInitialization && (new_size > old_size))
construct_elements_of_array(result+old_size, new_size-old_size);
return result;
}
template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
{
if(NumTraits<T>::RequireInitialization)
destruct_elements_of_array<T>(ptr, size);
conditional_aligned_free<Align>(ptr);
}
/****************************************************************************/
/** \internal Returns the index of the first element of the array that is well aligned for vectorization.
*
* \param array the address of the start of the array
* \param size the size of the array
*
* \note If no element of the array is well aligned, the size of the array is returned. Typically,
* for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the
* packet size for the given scalar type is 1, then everything is considered well-aligned.
*
* \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a
* power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the
* other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
* example with Scalar=double on certain 32-bit platforms, see bug #79.
*
* There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
*/
template<typename Scalar, typename Index>
static inline Index first_aligned(const Scalar* array, Index size)
{
typedef typename packet_traits<Scalar>::type Packet;
enum { PacketSize = packet_traits<Scalar>::size,
PacketAlignedMask = PacketSize-1
};
if(PacketSize==1)
{
// Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
// of the array have the same alignment.
return 0;
}
else if(size_t(array) & (sizeof(Scalar)-1))
{
// There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
// Consequently, no element of the array is well aligned.
return size;
}
else
{
return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
& PacketAlignedMask, size);
}
}
// std::copy is much slower than memcpy, so let's introduce a smart_copy which
// use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
template<typename T, bool UseMemcpy> struct smart_copy_helper;
template<typename T> void smart_copy(const T* start, const T* end, T* target)
{
smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
}
template<typename T> struct smart_copy_helper<T,true> {
static inline void run(const T* start, const T* end, T* target)
{ memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
};
template<typename T> struct smart_copy_helper<T,false> {
static inline void run(const T* start, const T* end, T* target)
{ std::copy(start, end, target); }
};
/*****************************************************************************
*** Implementation of runtime stack allocation (falling back to malloc) ***
*****************************************************************************/
// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
// to the appropriate stack allocation function
#ifndef EIGEN_ALLOCA
#if (defined __linux__)
#define EIGEN_ALLOCA alloca
#elif defined(_MSC_VER)
#define EIGEN_ALLOCA _alloca
#endif
#endif
// This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
// at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
template<typename T> class aligned_stack_memory_handler
{
public:
/* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
* Note that \a ptr can be 0 regardless of the other parameters.
* This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
* In this case, the buffer elements will also be destructed when this handler will be destructed.
* Finally, if \a dealloc is true, then the pointer \a ptr is freed.
**/
aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
: m_ptr(ptr), m_size(size), m_deallocate(dealloc)
{
if(NumTraits<T>::RequireInitialization && m_ptr)
Eigen::internal::construct_elements_of_array(m_ptr, size);
}
~aligned_stack_memory_handler()
{
if(NumTraits<T>::RequireInitialization && m_ptr)
Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
if(m_deallocate)
Eigen::internal::aligned_free(m_ptr);
}
protected:
T* m_ptr;
size_t m_size;
bool m_deallocate;
};
} // end namespace internal
/** \internal
* Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack
* if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
* (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap.
* The allocated buffer is automatically deleted when exiting the scope of this declaration.
* If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs.
* Here is an example:
* \code
* {
* ei_declare_aligned_stack_constructed_variable(float,data,size,0);
* // use data[0] to data[size-1]
* }
* \endcode
* The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
*/
#ifdef EIGEN_ALLOCA
#ifdef __arm__
#define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
#else
#define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
#endif
#define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
: reinterpret_cast<TYPE*>( \
(sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
: Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \
Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
#else
#define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \
Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
#endif
/*****************************************************************************
*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
*****************************************************************************/
#if EIGEN_ALIGN
#ifdef EIGEN_EXCEPTIONS
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
void* operator new(size_t size, const std::nothrow_t&) throw() { \
try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
catch (...) { return 0; } \
return 0; \
}
#else
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
void* operator new(size_t size, const std::nothrow_t&) throw() { \
return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
}
#endif
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
void *operator new(size_t size) { \
return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
} \
void *operator new[](size_t size) { \
return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
} \
void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
/* in-place new and delete. since (at least afaik) there is no actual */ \
/* memory allocated we can safely let the default implementation handle */ \
/* this particular case. */ \
static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
/* nothrow-new (returns zero instead of std::bad_alloc) */ \
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
void operator delete(void *ptr, const std::nothrow_t&) throw() { \
Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
} \
typedef void eigen_aligned_operator_new_marker_type;
#else
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
#endif
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
/****************************************************************************/
/** \class aligned_allocator
* \ingroup Core_Module
*
* \brief STL compatible allocator to use with with 16 byte aligned types
*
* Example:
* \code
* // Matrix4f requires 16 bytes alignment:
* std::map< int, Matrix4f, std::less<int>,
* aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
* std::map< int, Vector3f > my_map_vec3;
* \endcode
*
* \sa \ref TopicStlContainers.
*/
template<class T>
class aligned_allocator
{
public:
typedef size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template<class U>
struct rebind
{
typedef aligned_allocator<U> other;
};
pointer address( reference value ) const
{
return &value;
}
const_pointer address( const_reference value ) const
{
return &value;
}
aligned_allocator()
{
}
aligned_allocator( const aligned_allocator& )
{
}
template<class U>
aligned_allocator( const aligned_allocator<U>& )
{
}
~aligned_allocator()
{
}
size_type max_size() const
{
return (std::numeric_limits<size_type>::max)();
}
pointer allocate( size_type num, const void* hint = 0 )
{
EIGEN_UNUSED_VARIABLE(hint);
internal::check_size_for_overflow<T>(num);
return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
}
void construct( pointer p, const T& value )
{
::new( p ) T( value );
}
// Support for c++11
#if (__cplusplus >= 201103L)
template<typename... Args>
void construct(pointer p, Args&&... args)
{
::new(p) T(std::forward<Args>(args)...);
}
#endif
void destroy( pointer p )
{
p->~T();
}
void deallocate( pointer p, size_type /*num*/ )
{
internal::aligned_free( p );
}
bool operator!=(const aligned_allocator<T>& ) const
{ return false; }
bool operator==(const aligned_allocator<T>& ) const
{ return true; }
};
//---------- Cache sizes ----------
#if !defined(EIGEN_NO_CPUID)
# if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
# if defined(__PIC__) && defined(__i386__)
// Case for x86 with PIC
# define EIGEN_CPUID(abcd,func,id) \
__asm__ __volatile__ ("xchgl %%ebx, %%esi;cpuid; xchgl %%ebx,%%esi": "=a" (abcd[0]), "=S" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
# else
// Case for x86_64 or x86 w/o PIC
# define EIGEN_CPUID(abcd,func,id) \
__asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id) );
# endif
# elif defined(_MSC_VER)
# if (_MSC_VER > 1500)
# define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
# endif
# endif
#endif
namespace internal {
#ifdef EIGEN_CPUID
inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
{
return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2];
}
inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
{
int abcd[4];
l1 = l2 = l3 = 0;
int cache_id = 0;
int cache_type = 0;
do {
abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
EIGEN_CPUID(abcd,0x4,cache_id);
cache_type = (abcd[0] & 0x0F) >> 0;
if(cache_type==1||cache_type==3) // data or unified cache
{
int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
int sets = (abcd[2]); // C[31:0]
int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
switch(cache_level)
{
case 1: l1 = cache_size; break;
case 2: l2 = cache_size; break;
case 3: l3 = cache_size; break;
default: break;
}
}
cache_id++;
} while(cache_type>0 && cache_id<16);
}
inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
{
int abcd[4];
abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
l1 = l2 = l3 = 0;
EIGEN_CPUID(abcd,0x00000002,0);
unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
bool check_for_p2_core2 = false;
for(int i=0; i<14; ++i)
{
switch(bytes[i])
{
case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
default: break;
}
}
if(check_for_p2_core2 && l2 == l3)
l3 = 0;
l1 *= 1024;
l2 *= 1024;
l3 *= 1024;
}
inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
{
if(max_std_funcs>=4)
queryCacheSizes_intel_direct(l1,l2,l3);
else
queryCacheSizes_intel_codes(l1,l2,l3);
}
inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
{
int abcd[4];
abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
EIGEN_CPUID(abcd,0x80000005,0);
l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
EIGEN_CPUID(abcd,0x80000006,0);
l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
}
#endif
/** \internal
* Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
inline void queryCacheSizes(int& l1, int& l2, int& l3)
{
#ifdef EIGEN_CPUID
int abcd[4];
// identify the CPU vendor
EIGEN_CPUID(abcd,0x0,0);
int max_std_funcs = abcd[1];
if(cpuid_is_vendor(abcd,"GenuineIntel"))
queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!"))
queryCacheSizes_amd(l1,l2,l3);
else
// by default let's use Intel's API
queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
// here is the list of other vendors:
// ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
// ||cpuid_is_vendor(abcd,"CyrixInstead")
// ||cpuid_is_vendor(abcd,"CentaurHauls")
// ||cpuid_is_vendor(abcd,"GenuineTMx86")
// ||cpuid_is_vendor(abcd,"TransmetaCPU")
// ||cpuid_is_vendor(abcd,"RiseRiseRise")
// ||cpuid_is_vendor(abcd,"Geode by NSC")
// ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
// ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
// ||cpuid_is_vendor(abcd,"NexGenDriven")
#else
l1 = l2 = l3 = -1;
#endif
}
/** \internal
* \returns the size in Bytes of the L1 data cache */
inline int queryL1CacheSize()
{
int l1(-1), l2, l3;
queryCacheSizes(l1,l2,l3);
return l1;
}
/** \internal
* \returns the size in Bytes of the L2 or L3 cache if this later is present */
inline int queryTopLevelCacheSize()
{
int l1, l2(-1), l3(-1);
queryCacheSizes(l1,l2,l3);
return (std::max)(l2,l3);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MEMORY_H