| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com> |
| // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> |
| // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| |
| /***************************************************************************** |
| *** Platform checks for aligned malloc functions *** |
| *****************************************************************************/ |
| |
| #ifndef EIGEN_MEMORY_H |
| #define EIGEN_MEMORY_H |
| |
| // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see: |
| // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html |
| // This is true at least since glibc 2.8. |
| // This leaves the question how to detect 64-bit. According to this document, |
| // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf |
| // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed |
| // quite safe, at least within the context of glibc, to equate 64-bit with LP64. |
| #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \ |
| && defined(__LP64__) |
| #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1 |
| #else |
| #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0 |
| #endif |
| |
| // FreeBSD 6 seems to have 16-byte aligned malloc |
| // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup |
| // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures |
| // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup |
| #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__) |
| #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1 |
| #else |
| #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0 |
| #endif |
| |
| #if defined(__APPLE__) \ |
| || defined(_WIN64) \ |
| || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \ |
| || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED |
| #define EIGEN_MALLOC_ALREADY_ALIGNED 1 |
| #else |
| #define EIGEN_MALLOC_ALREADY_ALIGNED 0 |
| #endif |
| |
| #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) \ |
| && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0) |
| #define EIGEN_HAS_POSIX_MEMALIGN 1 |
| #else |
| #define EIGEN_HAS_POSIX_MEMALIGN 0 |
| #endif |
| |
| #ifdef EIGEN_VECTORIZE_SSE |
| #define EIGEN_HAS_MM_MALLOC 1 |
| #else |
| #define EIGEN_HAS_MM_MALLOC 0 |
| #endif |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| inline void throw_std_bad_alloc() |
| { |
| #ifdef EIGEN_EXCEPTIONS |
| throw std::bad_alloc(); |
| #else |
| std::size_t huge = -1; |
| new int[huge]; |
| #endif |
| } |
| |
| /***************************************************************************** |
| *** Implementation of handmade aligned functions *** |
| *****************************************************************************/ |
| |
| /* ----- Hand made implementations of aligned malloc/free and realloc ----- */ |
| |
| /** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned. |
| * Fast, but wastes 16 additional bytes of memory. Does not throw any exception. |
| */ |
| inline void* handmade_aligned_malloc(size_t size) |
| { |
| void *original = std::malloc(size+16); |
| if (original == 0) return 0; |
| void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16); |
| *(reinterpret_cast<void**>(aligned) - 1) = original; |
| return aligned; |
| } |
| |
| /** \internal Frees memory allocated with handmade_aligned_malloc */ |
| inline void handmade_aligned_free(void *ptr) |
| { |
| if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1)); |
| } |
| |
| /** \internal |
| * \brief Reallocates aligned memory. |
| * Since we know that our handmade version is based on std::realloc |
| * we can use std::realloc to implement efficient reallocation. |
| */ |
| inline void* handmade_aligned_realloc(void* ptr, size_t size, size_t = 0) |
| { |
| if (ptr == 0) return handmade_aligned_malloc(size); |
| void *original = *(reinterpret_cast<void**>(ptr) - 1); |
| original = std::realloc(original,size+16); |
| if (original == 0) return 0; |
| void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16); |
| *(reinterpret_cast<void**>(aligned) - 1) = original; |
| return aligned; |
| } |
| |
| /***************************************************************************** |
| *** Implementation of generic aligned realloc (when no realloc can be used)*** |
| *****************************************************************************/ |
| |
| void* aligned_malloc(size_t size); |
| void aligned_free(void *ptr); |
| |
| /** \internal |
| * \brief Reallocates aligned memory. |
| * Allows reallocation with aligned ptr types. This implementation will |
| * always create a new memory chunk and copy the old data. |
| */ |
| inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size) |
| { |
| if (ptr==0) |
| return aligned_malloc(size); |
| |
| if (size==0) |
| { |
| aligned_free(ptr); |
| return 0; |
| } |
| |
| void* newptr = aligned_malloc(size); |
| if (newptr == 0) |
| { |
| #ifdef EIGEN_HAS_ERRNO |
| errno = ENOMEM; // according to the standard |
| #endif |
| return 0; |
| } |
| |
| if (ptr != 0) |
| { |
| std::memcpy(newptr, ptr, (std::min)(size,old_size)); |
| aligned_free(ptr); |
| } |
| |
| return newptr; |
| } |
| |
| /***************************************************************************** |
| *** Implementation of portable aligned versions of malloc/free/realloc *** |
| *****************************************************************************/ |
| |
| #ifdef EIGEN_NO_MALLOC |
| inline void check_that_malloc_is_allowed() |
| { |
| eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)"); |
| } |
| #elif defined EIGEN_RUNTIME_NO_MALLOC |
| inline bool is_malloc_allowed_impl(bool update, bool new_value = false) |
| { |
| static bool value = true; |
| if (update == 1) |
| value = new_value; |
| return value; |
| } |
| inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); } |
| inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); } |
| inline void check_that_malloc_is_allowed() |
| { |
| eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)"); |
| } |
| #else |
| inline void check_that_malloc_is_allowed() |
| {} |
| #endif |
| |
| /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment. |
| * On allocation error, the returned pointer is null, and std::bad_alloc is thrown. |
| */ |
| inline void* aligned_malloc(size_t size) |
| { |
| check_that_malloc_is_allowed(); |
| |
| void *result; |
| #if !EIGEN_ALIGN |
| result = std::malloc(size); |
| #elif EIGEN_MALLOC_ALREADY_ALIGNED |
| result = std::malloc(size); |
| #elif EIGEN_HAS_POSIX_MEMALIGN |
| if(posix_memalign(&result, 16, size)) result = 0; |
| #elif EIGEN_HAS_MM_MALLOC |
| result = _mm_malloc(size, 16); |
| #elif (defined _MSC_VER) |
| result = _aligned_malloc(size, 16); |
| #else |
| result = handmade_aligned_malloc(size); |
| #endif |
| |
| if(!result && size) |
| throw_std_bad_alloc(); |
| |
| return result; |
| } |
| |
| /** \internal Frees memory allocated with aligned_malloc. */ |
| inline void aligned_free(void *ptr) |
| { |
| #if !EIGEN_ALIGN |
| std::free(ptr); |
| #elif EIGEN_MALLOC_ALREADY_ALIGNED |
| std::free(ptr); |
| #elif EIGEN_HAS_POSIX_MEMALIGN |
| std::free(ptr); |
| #elif EIGEN_HAS_MM_MALLOC |
| _mm_free(ptr); |
| #elif defined(_MSC_VER) |
| _aligned_free(ptr); |
| #else |
| handmade_aligned_free(ptr); |
| #endif |
| } |
| |
| /** |
| * \internal |
| * \brief Reallocates an aligned block of memory. |
| * \throws std::bad_alloc on allocation failure |
| **/ |
| inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size) |
| { |
| EIGEN_UNUSED_VARIABLE(old_size); |
| |
| void *result; |
| #if !EIGEN_ALIGN |
| result = std::realloc(ptr,new_size); |
| #elif EIGEN_MALLOC_ALREADY_ALIGNED |
| result = std::realloc(ptr,new_size); |
| #elif EIGEN_HAS_POSIX_MEMALIGN |
| result = generic_aligned_realloc(ptr,new_size,old_size); |
| #elif EIGEN_HAS_MM_MALLOC |
| // The defined(_mm_free) is just here to verify that this MSVC version |
| // implements _mm_malloc/_mm_free based on the corresponding _aligned_ |
| // functions. This may not always be the case and we just try to be safe. |
| #if defined(_MSC_VER) && defined(_mm_free) |
| result = _aligned_realloc(ptr,new_size,16); |
| #else |
| result = generic_aligned_realloc(ptr,new_size,old_size); |
| #endif |
| #elif defined(_MSC_VER) |
| result = _aligned_realloc(ptr,new_size,16); |
| #else |
| result = handmade_aligned_realloc(ptr,new_size,old_size); |
| #endif |
| |
| if (!result && new_size) |
| throw_std_bad_alloc(); |
| |
| return result; |
| } |
| |
| /***************************************************************************** |
| *** Implementation of conditionally aligned functions *** |
| *****************************************************************************/ |
| |
| /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned. |
| * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown. |
| */ |
| template<bool Align> inline void* conditional_aligned_malloc(size_t size) |
| { |
| return aligned_malloc(size); |
| } |
| |
| template<> inline void* conditional_aligned_malloc<false>(size_t size) |
| { |
| check_that_malloc_is_allowed(); |
| |
| void *result = std::malloc(size); |
| if(!result && size) |
| throw_std_bad_alloc(); |
| return result; |
| } |
| |
| /** \internal Frees memory allocated with conditional_aligned_malloc */ |
| template<bool Align> inline void conditional_aligned_free(void *ptr) |
| { |
| aligned_free(ptr); |
| } |
| |
| template<> inline void conditional_aligned_free<false>(void *ptr) |
| { |
| std::free(ptr); |
| } |
| |
| template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size) |
| { |
| return aligned_realloc(ptr, new_size, old_size); |
| } |
| |
| template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t) |
| { |
| return std::realloc(ptr, new_size); |
| } |
| |
| /***************************************************************************** |
| *** Construction/destruction of array elements *** |
| *****************************************************************************/ |
| |
| /** \internal Constructs the elements of an array. |
| * The \a size parameter tells on how many objects to call the constructor of T. |
| */ |
| template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size) |
| { |
| for (size_t i=0; i < size; ++i) ::new (ptr + i) T; |
| return ptr; |
| } |
| |
| /** \internal Destructs the elements of an array. |
| * The \a size parameters tells on how many objects to call the destructor of T. |
| */ |
| template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size) |
| { |
| // always destruct an array starting from the end. |
| if(ptr) |
| while(size) ptr[--size].~T(); |
| } |
| |
| /***************************************************************************** |
| *** Implementation of aligned new/delete-like functions *** |
| *****************************************************************************/ |
| |
| template<typename T> |
| EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size) |
| { |
| if(size > size_t(-1) / sizeof(T)) |
| throw_std_bad_alloc(); |
| } |
| |
| /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment. |
| * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown. |
| * The default constructor of T is called. |
| */ |
| template<typename T> inline T* aligned_new(size_t size) |
| { |
| check_size_for_overflow<T>(size); |
| T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size)); |
| return construct_elements_of_array(result, size); |
| } |
| |
| template<typename T, bool Align> inline T* conditional_aligned_new(size_t size) |
| { |
| check_size_for_overflow<T>(size); |
| T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size)); |
| return construct_elements_of_array(result, size); |
| } |
| |
| /** \internal Deletes objects constructed with aligned_new |
| * The \a size parameters tells on how many objects to call the destructor of T. |
| */ |
| template<typename T> inline void aligned_delete(T *ptr, size_t size) |
| { |
| destruct_elements_of_array<T>(ptr, size); |
| aligned_free(ptr); |
| } |
| |
| /** \internal Deletes objects constructed with conditional_aligned_new |
| * The \a size parameters tells on how many objects to call the destructor of T. |
| */ |
| template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size) |
| { |
| destruct_elements_of_array<T>(ptr, size); |
| conditional_aligned_free<Align>(ptr); |
| } |
| |
| template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size) |
| { |
| check_size_for_overflow<T>(new_size); |
| check_size_for_overflow<T>(old_size); |
| if(new_size < old_size) |
| destruct_elements_of_array(pts+new_size, old_size-new_size); |
| T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size)); |
| if(new_size > old_size) |
| construct_elements_of_array(result+old_size, new_size-old_size); |
| return result; |
| } |
| |
| |
| template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size) |
| { |
| check_size_for_overflow<T>(size); |
| T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size)); |
| if(NumTraits<T>::RequireInitialization) |
| construct_elements_of_array(result, size); |
| return result; |
| } |
| |
| template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size) |
| { |
| check_size_for_overflow<T>(new_size); |
| check_size_for_overflow<T>(old_size); |
| if(NumTraits<T>::RequireInitialization && (new_size < old_size)) |
| destruct_elements_of_array(pts+new_size, old_size-new_size); |
| T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size)); |
| if(NumTraits<T>::RequireInitialization && (new_size > old_size)) |
| construct_elements_of_array(result+old_size, new_size-old_size); |
| return result; |
| } |
| |
| template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size) |
| { |
| if(NumTraits<T>::RequireInitialization) |
| destruct_elements_of_array<T>(ptr, size); |
| conditional_aligned_free<Align>(ptr); |
| } |
| |
| /****************************************************************************/ |
| |
| /** \internal Returns the index of the first element of the array that is well aligned for vectorization. |
| * |
| * \param array the address of the start of the array |
| * \param size the size of the array |
| * |
| * \note If no element of the array is well aligned, the size of the array is returned. Typically, |
| * for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the |
| * packet size for the given scalar type is 1, then everything is considered well-aligned. |
| * |
| * \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a |
| * power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the |
| * other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for |
| * example with Scalar=double on certain 32-bit platforms, see bug #79. |
| * |
| * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h. |
| */ |
| template<typename Scalar, typename Index> |
| static inline Index first_aligned(const Scalar* array, Index size) |
| { |
| typedef typename packet_traits<Scalar>::type Packet; |
| enum { PacketSize = packet_traits<Scalar>::size, |
| PacketAlignedMask = PacketSize-1 |
| }; |
| |
| if(PacketSize==1) |
| { |
| // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements |
| // of the array have the same alignment. |
| return 0; |
| } |
| else if(size_t(array) & (sizeof(Scalar)-1)) |
| { |
| // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar. |
| // Consequently, no element of the array is well aligned. |
| return size; |
| } |
| else |
| { |
| return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask)) |
| & PacketAlignedMask, size); |
| } |
| } |
| |
| |
| // std::copy is much slower than memcpy, so let's introduce a smart_copy which |
| // use memcpy on trivial types, i.e., on types that does not require an initialization ctor. |
| template<typename T, bool UseMemcpy> struct smart_copy_helper; |
| |
| template<typename T> void smart_copy(const T* start, const T* end, T* target) |
| { |
| smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target); |
| } |
| |
| template<typename T> struct smart_copy_helper<T,true> { |
| static inline void run(const T* start, const T* end, T* target) |
| { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); } |
| }; |
| |
| template<typename T> struct smart_copy_helper<T,false> { |
| static inline void run(const T* start, const T* end, T* target) |
| { std::copy(start, end, target); } |
| }; |
| |
| |
| /***************************************************************************** |
| *** Implementation of runtime stack allocation (falling back to malloc) *** |
| *****************************************************************************/ |
| |
| // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA |
| // to the appropriate stack allocation function |
| #ifndef EIGEN_ALLOCA |
| #if (defined __linux__) |
| #define EIGEN_ALLOCA alloca |
| #elif defined(_MSC_VER) |
| #define EIGEN_ALLOCA _alloca |
| #endif |
| #endif |
| |
| // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data |
| // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions. |
| template<typename T> class aligned_stack_memory_handler |
| { |
| public: |
| /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size. |
| * Note that \a ptr can be 0 regardless of the other parameters. |
| * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization). |
| * In this case, the buffer elements will also be destructed when this handler will be destructed. |
| * Finally, if \a dealloc is true, then the pointer \a ptr is freed. |
| **/ |
| aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc) |
| : m_ptr(ptr), m_size(size), m_deallocate(dealloc) |
| { |
| if(NumTraits<T>::RequireInitialization && m_ptr) |
| Eigen::internal::construct_elements_of_array(m_ptr, size); |
| } |
| ~aligned_stack_memory_handler() |
| { |
| if(NumTraits<T>::RequireInitialization && m_ptr) |
| Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size); |
| if(m_deallocate) |
| Eigen::internal::aligned_free(m_ptr); |
| } |
| protected: |
| T* m_ptr; |
| size_t m_size; |
| bool m_deallocate; |
| }; |
| |
| } // end namespace internal |
| |
| /** \internal |
| * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack |
| * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform |
| * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap. |
| * The allocated buffer is automatically deleted when exiting the scope of this declaration. |
| * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs. |
| * Here is an example: |
| * \code |
| * { |
| * ei_declare_aligned_stack_constructed_variable(float,data,size,0); |
| * // use data[0] to data[size-1] |
| * } |
| * \endcode |
| * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token. |
| */ |
| #ifdef EIGEN_ALLOCA |
| |
| #ifdef __arm__ |
| #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16) |
| #else |
| #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA |
| #endif |
| |
| #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ |
| Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ |
| TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \ |
| : reinterpret_cast<TYPE*>( \ |
| (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \ |
| : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \ |
| Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT) |
| |
| #else |
| |
| #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ |
| Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ |
| TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \ |
| Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true) |
| |
| #endif |
| |
| |
| /***************************************************************************** |
| *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] *** |
| *****************************************************************************/ |
| |
| #if EIGEN_ALIGN |
| #ifdef EIGEN_EXCEPTIONS |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ |
| void* operator new(size_t size, const std::nothrow_t&) throw() { \ |
| try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \ |
| catch (...) { return 0; } \ |
| return 0; \ |
| } |
| #else |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ |
| void* operator new(size_t size, const std::nothrow_t&) throw() { \ |
| return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ |
| } |
| #endif |
| |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \ |
| void *operator new(size_t size) { \ |
| return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ |
| } \ |
| void *operator new[](size_t size) { \ |
| return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ |
| } \ |
| void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
| void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
| /* in-place new and delete. since (at least afaik) there is no actual */ \ |
| /* memory allocated we can safely let the default implementation handle */ \ |
| /* this particular case. */ \ |
| static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \ |
| void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \ |
| /* nothrow-new (returns zero instead of std::bad_alloc) */ \ |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ |
| void operator delete(void *ptr, const std::nothrow_t&) throw() { \ |
| Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \ |
| } \ |
| typedef void eigen_aligned_operator_new_marker_type; |
| #else |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) |
| #endif |
| |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true) |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \ |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0))) |
| |
| /****************************************************************************/ |
| |
| /** \class aligned_allocator |
| * \ingroup Core_Module |
| * |
| * \brief STL compatible allocator to use with with 16 byte aligned types |
| * |
| * Example: |
| * \code |
| * // Matrix4f requires 16 bytes alignment: |
| * std::map< int, Matrix4f, std::less<int>, |
| * aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4; |
| * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator: |
| * std::map< int, Vector3f > my_map_vec3; |
| * \endcode |
| * |
| * \sa \ref TopicStlContainers. |
| */ |
| template<class T> |
| class aligned_allocator |
| { |
| public: |
| typedef size_t size_type; |
| typedef std::ptrdiff_t difference_type; |
| typedef T* pointer; |
| typedef const T* const_pointer; |
| typedef T& reference; |
| typedef const T& const_reference; |
| typedef T value_type; |
| |
| template<class U> |
| struct rebind |
| { |
| typedef aligned_allocator<U> other; |
| }; |
| |
| pointer address( reference value ) const |
| { |
| return &value; |
| } |
| |
| const_pointer address( const_reference value ) const |
| { |
| return &value; |
| } |
| |
| aligned_allocator() |
| { |
| } |
| |
| aligned_allocator( const aligned_allocator& ) |
| { |
| } |
| |
| template<class U> |
| aligned_allocator( const aligned_allocator<U>& ) |
| { |
| } |
| |
| ~aligned_allocator() |
| { |
| } |
| |
| size_type max_size() const |
| { |
| return (std::numeric_limits<size_type>::max)(); |
| } |
| |
| pointer allocate( size_type num, const void* hint = 0 ) |
| { |
| EIGEN_UNUSED_VARIABLE(hint); |
| internal::check_size_for_overflow<T>(num); |
| return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) ); |
| } |
| |
| void construct( pointer p, const T& value ) |
| { |
| ::new( p ) T( value ); |
| } |
| |
| // Support for c++11 |
| #if (__cplusplus >= 201103L) |
| template<typename... Args> |
| void construct(pointer p, Args&&... args) |
| { |
| ::new(p) T(std::forward<Args>(args)...); |
| } |
| #endif |
| |
| void destroy( pointer p ) |
| { |
| p->~T(); |
| } |
| |
| void deallocate( pointer p, size_type /*num*/ ) |
| { |
| internal::aligned_free( p ); |
| } |
| |
| bool operator!=(const aligned_allocator<T>& ) const |
| { return false; } |
| |
| bool operator==(const aligned_allocator<T>& ) const |
| { return true; } |
| }; |
| |
| //---------- Cache sizes ---------- |
| |
| #if !defined(EIGEN_NO_CPUID) |
| # if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) ) |
| # if defined(__PIC__) && defined(__i386__) |
| // Case for x86 with PIC |
| # define EIGEN_CPUID(abcd,func,id) \ |
| __asm__ __volatile__ ("xchgl %%ebx, %%esi;cpuid; xchgl %%ebx,%%esi": "=a" (abcd[0]), "=S" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id)); |
| # else |
| // Case for x86_64 or x86 w/o PIC |
| # define EIGEN_CPUID(abcd,func,id) \ |
| __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id) ); |
| # endif |
| # elif defined(_MSC_VER) |
| # if (_MSC_VER > 1500) |
| # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id) |
| # endif |
| # endif |
| #endif |
| |
| namespace internal { |
| |
| #ifdef EIGEN_CPUID |
| |
| inline bool cpuid_is_vendor(int abcd[4], const char* vendor) |
| { |
| return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2]; |
| } |
| |
| inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3) |
| { |
| int abcd[4]; |
| l1 = l2 = l3 = 0; |
| int cache_id = 0; |
| int cache_type = 0; |
| do { |
| abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
| EIGEN_CPUID(abcd,0x4,cache_id); |
| cache_type = (abcd[0] & 0x0F) >> 0; |
| if(cache_type==1||cache_type==3) // data or unified cache |
| { |
| int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5] |
| int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22] |
| int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12] |
| int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0] |
| int sets = (abcd[2]); // C[31:0] |
| |
| int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1); |
| |
| switch(cache_level) |
| { |
| case 1: l1 = cache_size; break; |
| case 2: l2 = cache_size; break; |
| case 3: l3 = cache_size; break; |
| default: break; |
| } |
| } |
| cache_id++; |
| } while(cache_type>0 && cache_id<16); |
| } |
| |
| inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3) |
| { |
| int abcd[4]; |
| abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
| l1 = l2 = l3 = 0; |
| EIGEN_CPUID(abcd,0x00000002,0); |
| unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2; |
| bool check_for_p2_core2 = false; |
| for(int i=0; i<14; ++i) |
| { |
| switch(bytes[i]) |
| { |
| case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines |
| case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines |
| case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines |
| case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) |
| case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) |
| case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines |
| case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines |
| case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored |
| case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored |
| case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored |
| case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored |
| case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64) |
| case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored |
| case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored |
| case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored |
| case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored |
| case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored |
| case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored |
| case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored |
| case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core) |
| case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines |
| case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines |
| case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines |
| case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines |
| case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines |
| case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines |
| case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines |
| case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines |
| case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2 |
| case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines |
| case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines |
| case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines |
| case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines |
| case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines |
| case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines |
| case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines |
| case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64) |
| case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines |
| case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines |
| case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines |
| case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines |
| case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines |
| case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines |
| case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines |
| case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines |
| case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines |
| case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64) |
| case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64) |
| case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64) |
| case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64) |
| |
| default: break; |
| } |
| } |
| if(check_for_p2_core2 && l2 == l3) |
| l3 = 0; |
| l1 *= 1024; |
| l2 *= 1024; |
| l3 *= 1024; |
| } |
| |
| inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs) |
| { |
| if(max_std_funcs>=4) |
| queryCacheSizes_intel_direct(l1,l2,l3); |
| else |
| queryCacheSizes_intel_codes(l1,l2,l3); |
| } |
| |
| inline void queryCacheSizes_amd(int& l1, int& l2, int& l3) |
| { |
| int abcd[4]; |
| abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
| EIGEN_CPUID(abcd,0x80000005,0); |
| l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB |
| abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
| EIGEN_CPUID(abcd,0x80000006,0); |
| l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB |
| l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB |
| } |
| #endif |
| |
| /** \internal |
| * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */ |
| inline void queryCacheSizes(int& l1, int& l2, int& l3) |
| { |
| #ifdef EIGEN_CPUID |
| int abcd[4]; |
| |
| // identify the CPU vendor |
| EIGEN_CPUID(abcd,0x0,0); |
| int max_std_funcs = abcd[1]; |
| if(cpuid_is_vendor(abcd,"GenuineIntel")) |
| queryCacheSizes_intel(l1,l2,l3,max_std_funcs); |
| else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!")) |
| queryCacheSizes_amd(l1,l2,l3); |
| else |
| // by default let's use Intel's API |
| queryCacheSizes_intel(l1,l2,l3,max_std_funcs); |
| |
| // here is the list of other vendors: |
| // ||cpuid_is_vendor(abcd,"VIA VIA VIA ") |
| // ||cpuid_is_vendor(abcd,"CyrixInstead") |
| // ||cpuid_is_vendor(abcd,"CentaurHauls") |
| // ||cpuid_is_vendor(abcd,"GenuineTMx86") |
| // ||cpuid_is_vendor(abcd,"TransmetaCPU") |
| // ||cpuid_is_vendor(abcd,"RiseRiseRise") |
| // ||cpuid_is_vendor(abcd,"Geode by NSC") |
| // ||cpuid_is_vendor(abcd,"SiS SiS SiS ") |
| // ||cpuid_is_vendor(abcd,"UMC UMC UMC ") |
| // ||cpuid_is_vendor(abcd,"NexGenDriven") |
| #else |
| l1 = l2 = l3 = -1; |
| #endif |
| } |
| |
| /** \internal |
| * \returns the size in Bytes of the L1 data cache */ |
| inline int queryL1CacheSize() |
| { |
| int l1(-1), l2, l3; |
| queryCacheSizes(l1,l2,l3); |
| return l1; |
| } |
| |
| /** \internal |
| * \returns the size in Bytes of the L2 or L3 cache if this later is present */ |
| inline int queryTopLevelCacheSize() |
| { |
| int l1, l2(-1), l3(-1); |
| queryCacheSizes(l1,l2,l3); |
| return (std::max)(l2,l3); |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MEMORY_H |