| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_XPRHELPER_H |
| #define EIGEN_XPRHELPER_H |
| |
| // just a workaround because GCC seems to not really like empty structs |
| // FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled |
| // so currently we simply disable this optimization for gcc 4.3 |
| #if (defined __GNUG__) && !((__GNUC__==4) && (__GNUC_MINOR__==3)) |
| #define EIGEN_EMPTY_STRUCT_CTOR(X) \ |
| EIGEN_STRONG_INLINE X() {} \ |
| EIGEN_STRONG_INLINE X(const X& ) {} |
| #else |
| #define EIGEN_EMPTY_STRUCT_CTOR(X) |
| #endif |
| |
| namespace Eigen { |
| |
| typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex; |
| |
| namespace internal { |
| |
| //classes inheriting no_assignment_operator don't generate a default operator=. |
| class no_assignment_operator |
| { |
| private: |
| no_assignment_operator& operator=(const no_assignment_operator&); |
| }; |
| |
| /** \internal return the index type with the largest number of bits */ |
| template<typename I1, typename I2> |
| struct promote_index_type |
| { |
| typedef typename conditional<(sizeof(I1)<sizeof(I2)), I2, I1>::type type; |
| }; |
| |
| /** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that |
| * can be accessed using value() and setValue(). |
| * Otherwise, this class is an empty structure and value() just returns the template parameter Value. |
| */ |
| template<typename T, int Value> class variable_if_dynamic |
| { |
| public: |
| EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic) |
| explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); } |
| static T value() { return T(Value); } |
| void setValue(T) {} |
| }; |
| |
| template<typename T> class variable_if_dynamic<T, Dynamic> |
| { |
| T m_value; |
| variable_if_dynamic() { assert(false); } |
| public: |
| explicit variable_if_dynamic(T value) : m_value(value) {} |
| T value() const { return m_value; } |
| void setValue(T value) { m_value = value; } |
| }; |
| |
| /** \internal like variable_if_dynamic but for DynamicIndex |
| */ |
| template<typename T, int Value> class variable_if_dynamicindex |
| { |
| public: |
| EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamicindex) |
| explicit variable_if_dynamicindex(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); } |
| static T value() { return T(Value); } |
| void setValue(T) {} |
| }; |
| |
| template<typename T> class variable_if_dynamicindex<T, DynamicIndex> |
| { |
| T m_value; |
| variable_if_dynamicindex() { assert(false); } |
| public: |
| explicit variable_if_dynamicindex(T value) : m_value(value) {} |
| T value() const { return m_value; } |
| void setValue(T value) { m_value = value; } |
| }; |
| |
| template<typename T> struct functor_traits |
| { |
| enum |
| { |
| Cost = 10, |
| PacketAccess = false |
| }; |
| }; |
| |
| template<typename T> struct packet_traits; |
| |
| template<typename T> struct unpacket_traits |
| { |
| typedef T type; |
| enum {size=1}; |
| }; |
| |
| template<typename _Scalar, int _Rows, int _Cols, |
| int _Options = AutoAlign | |
| ( (_Rows==1 && _Cols!=1) ? RowMajor |
| : (_Cols==1 && _Rows!=1) ? ColMajor |
| : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ), |
| int _MaxRows = _Rows, |
| int _MaxCols = _Cols |
| > class make_proper_matrix_type |
| { |
| enum { |
| IsColVector = _Cols==1 && _Rows!=1, |
| IsRowVector = _Rows==1 && _Cols!=1, |
| Options = IsColVector ? (_Options | ColMajor) & ~RowMajor |
| : IsRowVector ? (_Options | RowMajor) & ~ColMajor |
| : _Options |
| }; |
| public: |
| typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type; |
| }; |
| |
| template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
| class compute_matrix_flags |
| { |
| enum { |
| row_major_bit = Options&RowMajor ? RowMajorBit : 0, |
| is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic, |
| |
| aligned_bit = |
| ( |
| ((Options&DontAlign)==0) |
| && ( |
| #if EIGEN_ALIGN_STATICALLY |
| ((!is_dynamic_size_storage) && (((MaxCols*MaxRows*int(sizeof(Scalar))) % 16) == 0)) |
| #else |
| 0 |
| #endif |
| |
| || |
| |
| #if EIGEN_ALIGN |
| is_dynamic_size_storage |
| #else |
| 0 |
| #endif |
| |
| ) |
| ) ? AlignedBit : 0, |
| packet_access_bit = packet_traits<Scalar>::Vectorizable && aligned_bit ? PacketAccessBit : 0 |
| }; |
| |
| public: |
| enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit }; |
| }; |
| |
| template<int _Rows, int _Cols> struct size_at_compile_time |
| { |
| enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols }; |
| }; |
| |
| /* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type, |
| * whereas eval is a const reference in the case of a matrix |
| */ |
| |
| template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_matrix_type; |
| template<typename T, typename BaseClassType> struct plain_matrix_type_dense; |
| template<typename T> struct plain_matrix_type<T,Dense> |
| { |
| typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type; |
| }; |
| |
| template<typename T> struct plain_matrix_type_dense<T,MatrixXpr> |
| { |
| typedef Matrix<typename traits<T>::Scalar, |
| traits<T>::RowsAtCompileTime, |
| traits<T>::ColsAtCompileTime, |
| AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor), |
| traits<T>::MaxRowsAtCompileTime, |
| traits<T>::MaxColsAtCompileTime |
| > type; |
| }; |
| |
| template<typename T> struct plain_matrix_type_dense<T,ArrayXpr> |
| { |
| typedef Array<typename traits<T>::Scalar, |
| traits<T>::RowsAtCompileTime, |
| traits<T>::ColsAtCompileTime, |
| AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor), |
| traits<T>::MaxRowsAtCompileTime, |
| traits<T>::MaxColsAtCompileTime |
| > type; |
| }; |
| |
| /* eval : the return type of eval(). For matrices, this is just a const reference |
| * in order to avoid a useless copy |
| */ |
| |
| template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct eval; |
| |
| template<typename T> struct eval<T,Dense> |
| { |
| typedef typename plain_matrix_type<T>::type type; |
| // typedef typename T::PlainObject type; |
| // typedef T::Matrix<typename traits<T>::Scalar, |
| // traits<T>::RowsAtCompileTime, |
| // traits<T>::ColsAtCompileTime, |
| // AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor), |
| // traits<T>::MaxRowsAtCompileTime, |
| // traits<T>::MaxColsAtCompileTime |
| // > type; |
| }; |
| |
| // for matrices, no need to evaluate, just use a const reference to avoid a useless copy |
| template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> |
| struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense> |
| { |
| typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type; |
| }; |
| |
| template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> |
| struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense> |
| { |
| typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type; |
| }; |
| |
| |
| |
| /* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major |
| */ |
| template<typename T> struct plain_matrix_type_column_major |
| { |
| enum { Rows = traits<T>::RowsAtCompileTime, |
| Cols = traits<T>::ColsAtCompileTime, |
| MaxRows = traits<T>::MaxRowsAtCompileTime, |
| MaxCols = traits<T>::MaxColsAtCompileTime |
| }; |
| typedef Matrix<typename traits<T>::Scalar, |
| Rows, |
| Cols, |
| (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor, |
| MaxRows, |
| MaxCols |
| > type; |
| }; |
| |
| /* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major |
| */ |
| template<typename T> struct plain_matrix_type_row_major |
| { |
| enum { Rows = traits<T>::RowsAtCompileTime, |
| Cols = traits<T>::ColsAtCompileTime, |
| MaxRows = traits<T>::MaxRowsAtCompileTime, |
| MaxCols = traits<T>::MaxColsAtCompileTime |
| }; |
| typedef Matrix<typename traits<T>::Scalar, |
| Rows, |
| Cols, |
| (MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor, |
| MaxRows, |
| MaxCols |
| > type; |
| }; |
| |
| // we should be able to get rid of this one too |
| template<typename T> struct must_nest_by_value { enum { ret = false }; }; |
| |
| /** \internal The reference selector for template expressions. The idea is that we don't |
| * need to use references for expressions since they are light weight proxy |
| * objects which should generate no copying overhead. */ |
| template <typename T> |
| struct ref_selector |
| { |
| typedef typename conditional< |
| bool(traits<T>::Flags & NestByRefBit), |
| T const&, |
| const T |
| >::type type; |
| }; |
| |
| /** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */ |
| template<typename T1, typename T2> |
| struct transfer_constness |
| { |
| typedef typename conditional< |
| bool(internal::is_const<T1>::value), |
| typename internal::add_const_on_value_type<T2>::type, |
| T2 |
| >::type type; |
| }; |
| |
| /** \internal Determines how a given expression should be nested into another one. |
| * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be |
| * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or |
| * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is |
| * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes |
| * many coefficient accesses in the nested expressions -- as is the case with matrix product for example. |
| * |
| * \param T the type of the expression being nested |
| * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression. |
| * |
| * Note that if no evaluation occur, then the constness of T is preserved. |
| * |
| * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c). |
| * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it, |
| * the Product expression uses: nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of |
| * nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand, |
| * since a is of type Matrix3d, the Product expression nests it as nested<Matrix3d, 3>::ret, which turns out to be |
| * const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point |
| * in copying it into another matrix. |
| */ |
| template<typename T, int n=1, typename PlainObject = typename eval<T>::type> struct nested |
| { |
| enum { |
| // for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values. |
| // the choice of 10000 makes it larger than any practical fixed value and even most dynamic values. |
| // in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues |
| // (poor choice of temporaries). |
| // it's important that this value can still be squared without integer overflowing. |
| DynamicAsInteger = 10000, |
| ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost, |
| ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? DynamicAsInteger : ScalarReadCost, |
| CoeffReadCost = traits<T>::CoeffReadCost, |
| CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? DynamicAsInteger : CoeffReadCost, |
| NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n, |
| CostEvalAsInteger = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger, |
| CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger |
| }; |
| |
| typedef typename conditional< |
| ( (int(traits<T>::Flags) & EvalBeforeNestingBit) || |
| int(CostEvalAsInteger) < int(CostNoEvalAsInteger) |
| ), |
| PlainObject, |
| typename ref_selector<T>::type |
| >::type type; |
| }; |
| |
| template<typename T> |
| T* const_cast_ptr(const T* ptr) |
| { |
| return const_cast<T*>(ptr); |
| } |
| |
| template<typename Derived, typename XprKind = typename traits<Derived>::XprKind> |
| struct dense_xpr_base |
| { |
| /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */ |
| }; |
| |
| template<typename Derived> |
| struct dense_xpr_base<Derived, MatrixXpr> |
| { |
| typedef MatrixBase<Derived> type; |
| }; |
| |
| template<typename Derived> |
| struct dense_xpr_base<Derived, ArrayXpr> |
| { |
| typedef ArrayBase<Derived> type; |
| }; |
| |
| /** \internal Helper base class to add a scalar multiple operator |
| * overloads for complex types */ |
| template<typename Derived,typename Scalar,typename OtherScalar, |
| bool EnableIt = !is_same<Scalar,OtherScalar>::value > |
| struct special_scalar_op_base : public DenseCoeffsBase<Derived> |
| { |
| // dummy operator* so that the |
| // "using special_scalar_op_base::operator*" compiles |
| void operator*() const; |
| }; |
| |
| template<typename Derived,typename Scalar,typename OtherScalar> |
| struct special_scalar_op_base<Derived,Scalar,OtherScalar,true> : public DenseCoeffsBase<Derived> |
| { |
| const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived> |
| operator*(const OtherScalar& scalar) const |
| { |
| return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived> |
| (*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar)); |
| } |
| |
| inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived> |
| operator*(const OtherScalar& scalar, const Derived& matrix) |
| { return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar); } |
| }; |
| |
| template<typename XprType, typename CastType> struct cast_return_type |
| { |
| typedef typename XprType::Scalar CurrentScalarType; |
| typedef typename remove_all<CastType>::type _CastType; |
| typedef typename _CastType::Scalar NewScalarType; |
| typedef typename conditional<is_same<CurrentScalarType,NewScalarType>::value, |
| const XprType&,CastType>::type type; |
| }; |
| |
| template <typename A, typename B> struct promote_storage_type; |
| |
| template <typename A> struct promote_storage_type<A,A> |
| { |
| typedef A ret; |
| }; |
| |
| /** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type. |
| * \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType. |
| */ |
| template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar> |
| struct plain_row_type |
| { |
| typedef Matrix<Scalar, 1, ExpressionType::ColsAtCompileTime, |
| ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> MatrixRowType; |
| typedef Array<Scalar, 1, ExpressionType::ColsAtCompileTime, |
| ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> ArrayRowType; |
| |
| typedef typename conditional< |
| is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value, |
| MatrixRowType, |
| ArrayRowType |
| >::type type; |
| }; |
| |
| template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar> |
| struct plain_col_type |
| { |
| typedef Matrix<Scalar, ExpressionType::RowsAtCompileTime, 1, |
| ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> MatrixColType; |
| typedef Array<Scalar, ExpressionType::RowsAtCompileTime, 1, |
| ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> ArrayColType; |
| |
| typedef typename conditional< |
| is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value, |
| MatrixColType, |
| ArrayColType |
| >::type type; |
| }; |
| |
| template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar> |
| struct plain_diag_type |
| { |
| enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime), |
| max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime) |
| }; |
| typedef Matrix<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> MatrixDiagType; |
| typedef Array<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> ArrayDiagType; |
| |
| typedef typename conditional< |
| is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value, |
| MatrixDiagType, |
| ArrayDiagType |
| >::type type; |
| }; |
| |
| template<typename ExpressionType> |
| struct is_lvalue |
| { |
| enum { value = !bool(is_const<ExpressionType>::value) && |
| bool(traits<ExpressionType>::Flags & LvalueBit) }; |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_XPRHELPER_H |