| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_PARAMETRIZEDLINE_H |
| #define EIGEN_PARAMETRIZEDLINE_H |
| |
| namespace Eigen { |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class ParametrizedLine |
| * |
| * \brief A parametrized line |
| * |
| * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit |
| * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to |
| * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ t \in \mathbf{R} \f$. |
| * |
| * \param _Scalar the scalar type, i.e., the type of the coefficients |
| * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. |
| */ |
| template <typename _Scalar, int _AmbientDim, int _Options> |
| class ParametrizedLine |
| { |
| public: |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim) |
| enum { |
| AmbientDimAtCompileTime = _AmbientDim, |
| Options = _Options |
| }; |
| typedef _Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef DenseIndex Index; |
| typedef Matrix<Scalar,AmbientDimAtCompileTime,1,Options> VectorType; |
| |
| /** Default constructor without initialization */ |
| inline explicit ParametrizedLine() {} |
| |
| template<int OtherOptions> |
| ParametrizedLine(const ParametrizedLine<Scalar,AmbientDimAtCompileTime,OtherOptions>& other) |
| : m_origin(other.origin()), m_direction(other.direction()) |
| {} |
| |
| /** Constructs a dynamic-size line with \a _dim the dimension |
| * of the ambient space */ |
| inline explicit ParametrizedLine(Index _dim) : m_origin(_dim), m_direction(_dim) {} |
| |
| /** Initializes a parametrized line of direction \a direction and origin \a origin. |
| * \warning the vector direction is assumed to be normalized. |
| */ |
| ParametrizedLine(const VectorType& origin, const VectorType& direction) |
| : m_origin(origin), m_direction(direction) {} |
| |
| template <int OtherOptions> |
| explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane); |
| |
| /** Constructs a parametrized line going from \a p0 to \a p1. */ |
| static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1) |
| { return ParametrizedLine(p0, (p1-p0).normalized()); } |
| |
| ~ParametrizedLine() {} |
| |
| /** \returns the dimension in which the line holds */ |
| inline Index dim() const { return m_direction.size(); } |
| |
| const VectorType& origin() const { return m_origin; } |
| VectorType& origin() { return m_origin; } |
| |
| const VectorType& direction() const { return m_direction; } |
| VectorType& direction() { return m_direction; } |
| |
| /** \returns the squared distance of a point \a p to its projection onto the line \c *this. |
| * \sa distance() |
| */ |
| RealScalar squaredDistance(const VectorType& p) const |
| { |
| VectorType diff = p - origin(); |
| return (diff - direction().dot(diff) * direction()).squaredNorm(); |
| } |
| /** \returns the distance of a point \a p to its projection onto the line \c *this. |
| * \sa squaredDistance() |
| */ |
| RealScalar distance(const VectorType& p) const { return internal::sqrt(squaredDistance(p)); } |
| |
| /** \returns the projection of a point \a p onto the line \c *this. */ |
| VectorType projection(const VectorType& p) const |
| { return origin() + direction().dot(p-origin()) * direction(); } |
| |
| VectorType pointAt(const Scalar& t) const; |
| |
| template <int OtherOptions> |
| Scalar intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const; |
| |
| template <int OtherOptions> |
| Scalar intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const; |
| |
| template <int OtherOptions> |
| VectorType intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const; |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template<typename NewScalarType> |
| inline typename internal::cast_return_type<ParametrizedLine, |
| ParametrizedLine<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const |
| { |
| return typename internal::cast_return_type<ParametrizedLine, |
| ParametrizedLine<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this); |
| } |
| |
| /** Copy constructor with scalar type conversion */ |
| template<typename OtherScalarType,int OtherOptions> |
| inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other) |
| { |
| m_origin = other.origin().template cast<Scalar>(); |
| m_direction = other.direction().template cast<Scalar>(); |
| } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| bool isApprox(const ParametrizedLine& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const |
| { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); } |
| |
| protected: |
| |
| VectorType m_origin, m_direction; |
| }; |
| |
| /** Constructs a parametrized line from a 2D hyperplane |
| * |
| * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line |
| */ |
| template <typename _Scalar, int _AmbientDim, int _Options> |
| template <int OtherOptions> |
| inline ParametrizedLine<_Scalar, _AmbientDim,_Options>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim,OtherOptions>& hyperplane) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) |
| direction() = hyperplane.normal().unitOrthogonal(); |
| origin() = -hyperplane.normal()*hyperplane.offset(); |
| } |
| |
| /** \returns the point at \a t along this line |
| */ |
| template <typename _Scalar, int _AmbientDim, int _Options> |
| inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType |
| ParametrizedLine<_Scalar, _AmbientDim,_Options>::pointAt(const _Scalar& t) const |
| { |
| return origin() + (direction()*t); |
| } |
| |
| /** \returns the parameter value of the intersection between \c *this and the given \a hyperplane |
| */ |
| template <typename _Scalar, int _AmbientDim, int _Options> |
| template <int OtherOptions> |
| inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const |
| { |
| return -(hyperplane.offset()+hyperplane.normal().dot(origin())) |
| / hyperplane.normal().dot(direction()); |
| } |
| |
| |
| /** \deprecated use intersectionParameter() |
| * \returns the parameter value of the intersection between \c *this and the given \a hyperplane |
| */ |
| template <typename _Scalar, int _AmbientDim, int _Options> |
| template <int OtherOptions> |
| inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const |
| { |
| return intersectionParameter(hyperplane); |
| } |
| |
| /** \returns the point of the intersection between \c *this and the given hyperplane |
| */ |
| template <typename _Scalar, int _AmbientDim, int _Options> |
| template <int OtherOptions> |
| inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType |
| ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const |
| { |
| return pointAt(intersectionParameter(hyperplane)); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_PARAMETRIZEDLINE_H |