| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_TRANSFORM_H |
| #define EIGEN_TRANSFORM_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template<typename Transform> |
| struct transform_traits |
| { |
| enum |
| { |
| Dim = Transform::Dim, |
| HDim = Transform::HDim, |
| Mode = Transform::Mode, |
| IsProjective = (int(Mode)==int(Projective)) |
| }; |
| }; |
| |
| template< typename TransformType, |
| typename MatrixType, |
| int Case = transform_traits<TransformType>::IsProjective ? 0 |
| : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1 |
| : 2> |
| struct transform_right_product_impl; |
| |
| template< typename Other, |
| int Mode, |
| int Options, |
| int Dim, |
| int HDim, |
| int OtherRows=Other::RowsAtCompileTime, |
| int OtherCols=Other::ColsAtCompileTime> |
| struct transform_left_product_impl; |
| |
| template< typename Lhs, |
| typename Rhs, |
| bool AnyProjective = |
| transform_traits<Lhs>::IsProjective || |
| transform_traits<Rhs>::IsProjective> |
| struct transform_transform_product_impl; |
| |
| template< typename Other, |
| int Mode, |
| int Options, |
| int Dim, |
| int HDim, |
| int OtherRows=Other::RowsAtCompileTime, |
| int OtherCols=Other::ColsAtCompileTime> |
| struct transform_construct_from_matrix; |
| |
| template<typename TransformType> struct transform_take_affine_part; |
| |
| } // end namespace internal |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class Transform |
| * |
| * \brief Represents an homogeneous transformation in a N dimensional space |
| * |
| * \tparam _Scalar the scalar type, i.e., the type of the coefficients |
| * \tparam _Dim the dimension of the space |
| * \tparam _Mode the type of the transformation. Can be: |
| * - #Affine: the transformation is stored as a (Dim+1)^2 matrix, |
| * where the last row is assumed to be [0 ... 0 1]. |
| * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. |
| * - #Projective: the transformation is stored as a (Dim+1)^2 matrix |
| * without any assumption. |
| * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. |
| * These Options are passed directly to the underlying matrix type. |
| * |
| * The homography is internally represented and stored by a matrix which |
| * is available through the matrix() method. To understand the behavior of |
| * this class you have to think a Transform object as its internal |
| * matrix representation. The chosen convention is right multiply: |
| * |
| * \code v' = T * v \endcode |
| * |
| * Therefore, an affine transformation matrix M is shaped like this: |
| * |
| * \f$ \left( \begin{array}{cc} |
| * linear & translation\\ |
| * 0 ... 0 & 1 |
| * \end{array} \right) \f$ |
| * |
| * Note that for a projective transformation the last row can be anything, |
| * and then the interpretation of different parts might be sightly different. |
| * |
| * However, unlike a plain matrix, the Transform class provides many features |
| * simplifying both its assembly and usage. In particular, it can be composed |
| * with any other transformations (Transform,Translation,RotationBase,Matrix) |
| * and can be directly used to transform implicit homogeneous vectors. All these |
| * operations are handled via the operator*. For the composition of transformations, |
| * its principle consists to first convert the right/left hand sides of the product |
| * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. |
| * Of course, internally, operator* tries to perform the minimal number of operations |
| * according to the nature of each terms. Likewise, when applying the transform |
| * to non homogeneous vectors, the latters are automatically promoted to homogeneous |
| * one before doing the matrix product. The convertions to homogeneous representations |
| * are performed as follow: |
| * |
| * \b Translation t (Dim)x(1): |
| * \f$ \left( \begin{array}{cc} |
| * I & t \\ |
| * 0\,...\,0 & 1 |
| * \end{array} \right) \f$ |
| * |
| * \b Rotation R (Dim)x(Dim): |
| * \f$ \left( \begin{array}{cc} |
| * R & 0\\ |
| * 0\,...\,0 & 1 |
| * \end{array} \right) \f$ |
| * |
| * \b Linear \b Matrix L (Dim)x(Dim): |
| * \f$ \left( \begin{array}{cc} |
| * L & 0\\ |
| * 0\,...\,0 & 1 |
| * \end{array} \right) \f$ |
| * |
| * \b Affine \b Matrix A (Dim)x(Dim+1): |
| * \f$ \left( \begin{array}{c} |
| * A\\ |
| * 0\,...\,0\,1 |
| * \end{array} \right) \f$ |
| * |
| * \b Column \b vector v (Dim)x(1): |
| * \f$ \left( \begin{array}{c} |
| * v\\ |
| * 1 |
| * \end{array} \right) \f$ |
| * |
| * \b Set \b of \b column \b vectors V1...Vn (Dim)x(n): |
| * \f$ \left( \begin{array}{ccc} |
| * v_1 & ... & v_n\\ |
| * 1 & ... & 1 |
| * \end{array} \right) \f$ |
| * |
| * The concatenation of a Transform object with any kind of other transformation |
| * always returns a Transform object. |
| * |
| * A little exception to the "as pure matrix product" rule is the case of the |
| * transformation of non homogeneous vectors by an affine transformation. In |
| * that case the last matrix row can be ignored, and the product returns non |
| * homogeneous vectors. |
| * |
| * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, |
| * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. |
| * The solution is either to use a Dim x Dynamic matrix or explicitly request a |
| * vector transformation by making the vector homogeneous: |
| * \code |
| * m' = T * m.colwise().homogeneous(); |
| * \endcode |
| * Note that there is zero overhead. |
| * |
| * Conversion methods from/to Qt's QMatrix and QTransform are available if the |
| * preprocessor token EIGEN_QT_SUPPORT is defined. |
| * |
| * This class can be extended with the help of the plugin mechanism described on the page |
| * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN. |
| * |
| * \sa class Matrix, class Quaternion |
| */ |
| template<typename _Scalar, int _Dim, int _Mode, int _Options> |
| class Transform |
| { |
| public: |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) |
| enum { |
| Mode = _Mode, |
| Options = _Options, |
| Dim = _Dim, ///< space dimension in which the transformation holds |
| HDim = _Dim+1, ///< size of a respective homogeneous vector |
| Rows = int(Mode)==(AffineCompact) ? Dim : HDim |
| }; |
| /** the scalar type of the coefficients */ |
| typedef _Scalar Scalar; |
| typedef DenseIndex Index; |
| /** type of the matrix used to represent the transformation */ |
| typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType; |
| /** constified MatrixType */ |
| typedef const MatrixType ConstMatrixType; |
| /** type of the matrix used to represent the linear part of the transformation */ |
| typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType; |
| /** type of read/write reference to the linear part of the transformation */ |
| typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact)> LinearPart; |
| /** type of read reference to the linear part of the transformation */ |
| typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact)> ConstLinearPart; |
| /** type of read/write reference to the affine part of the transformation */ |
| typedef typename internal::conditional<int(Mode)==int(AffineCompact), |
| MatrixType&, |
| Block<MatrixType,Dim,HDim> >::type AffinePart; |
| /** type of read reference to the affine part of the transformation */ |
| typedef typename internal::conditional<int(Mode)==int(AffineCompact), |
| const MatrixType&, |
| const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart; |
| /** type of a vector */ |
| typedef Matrix<Scalar,Dim,1> VectorType; |
| /** type of a read/write reference to the translation part of the rotation */ |
| typedef Block<MatrixType,Dim,1,int(Mode)==(AffineCompact)> TranslationPart; |
| /** type of a read reference to the translation part of the rotation */ |
| typedef const Block<ConstMatrixType,Dim,1,int(Mode)==(AffineCompact)> ConstTranslationPart; |
| /** corresponding translation type */ |
| typedef Translation<Scalar,Dim> TranslationType; |
| |
| // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0 |
| enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) }; |
| /** The return type of the product between a diagonal matrix and a transform */ |
| typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType; |
| |
| protected: |
| |
| MatrixType m_matrix; |
| |
| public: |
| |
| /** Default constructor without initialization of the meaningful coefficients. |
| * If Mode==Affine, then the last row is set to [0 ... 0 1] */ |
| inline Transform() |
| { |
| check_template_params(); |
| if (int(Mode)==Affine) |
| makeAffine(); |
| } |
| |
| inline Transform(const Transform& other) |
| { |
| check_template_params(); |
| m_matrix = other.m_matrix; |
| } |
| |
| inline explicit Transform(const TranslationType& t) |
| { |
| check_template_params(); |
| *this = t; |
| } |
| inline explicit Transform(const UniformScaling<Scalar>& s) |
| { |
| check_template_params(); |
| *this = s; |
| } |
| template<typename Derived> |
| inline explicit Transform(const RotationBase<Derived, Dim>& r) |
| { |
| check_template_params(); |
| *this = r; |
| } |
| |
| inline Transform& operator=(const Transform& other) |
| { m_matrix = other.m_matrix; return *this; } |
| |
| typedef internal::transform_take_affine_part<Transform> take_affine_part; |
| |
| /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ |
| template<typename OtherDerived> |
| inline explicit Transform(const EigenBase<OtherDerived>& other) |
| { |
| EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value), |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); |
| |
| check_template_params(); |
| internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived()); |
| } |
| |
| /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */ |
| template<typename OtherDerived> |
| inline Transform& operator=(const EigenBase<OtherDerived>& other) |
| { |
| EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value), |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); |
| |
| internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived()); |
| return *this; |
| } |
| |
| template<int OtherOptions> |
| inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other) |
| { |
| check_template_params(); |
| // only the options change, we can directly copy the matrices |
| m_matrix = other.matrix(); |
| } |
| |
| template<int OtherMode,int OtherOptions> |
| inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) |
| { |
| check_template_params(); |
| // prevent conversions as: |
| // Affine | AffineCompact | Isometry = Projective |
| EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)), |
| YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) |
| |
| // prevent conversions as: |
| // Isometry = Affine | AffineCompact |
| EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)), |
| YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) |
| |
| enum { ModeIsAffineCompact = Mode == int(AffineCompact), |
| OtherModeIsAffineCompact = OtherMode == int(AffineCompact) |
| }; |
| |
| if(ModeIsAffineCompact == OtherModeIsAffineCompact) |
| { |
| // We need the block expression because the code is compiled for all |
| // combinations of transformations and will trigger a compile time error |
| // if one tries to assign the matrices directly |
| m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0); |
| makeAffine(); |
| } |
| else if(OtherModeIsAffineCompact) |
| { |
| typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType; |
| internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix()); |
| } |
| else |
| { |
| // here we know that Mode == AffineCompact and OtherMode != AffineCompact. |
| // if OtherMode were Projective, the static assert above would already have caught it. |
| // So the only possibility is that OtherMode == Affine |
| linear() = other.linear(); |
| translation() = other.translation(); |
| } |
| } |
| |
| template<typename OtherDerived> |
| Transform(const ReturnByValue<OtherDerived>& other) |
| { |
| check_template_params(); |
| other.evalTo(*this); |
| } |
| |
| template<typename OtherDerived> |
| Transform& operator=(const ReturnByValue<OtherDerived>& other) |
| { |
| other.evalTo(*this); |
| return *this; |
| } |
| |
| #ifdef EIGEN_QT_SUPPORT |
| inline Transform(const QMatrix& other); |
| inline Transform& operator=(const QMatrix& other); |
| inline QMatrix toQMatrix(void) const; |
| inline Transform(const QTransform& other); |
| inline Transform& operator=(const QTransform& other); |
| inline QTransform toQTransform(void) const; |
| #endif |
| |
| /** shortcut for m_matrix(row,col); |
| * \sa MatrixBase::operator(Index,Index) const */ |
| inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); } |
| /** shortcut for m_matrix(row,col); |
| * \sa MatrixBase::operator(Index,Index) */ |
| inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); } |
| |
| /** \returns a read-only expression of the transformation matrix */ |
| inline const MatrixType& matrix() const { return m_matrix; } |
| /** \returns a writable expression of the transformation matrix */ |
| inline MatrixType& matrix() { return m_matrix; } |
| |
| /** \returns a read-only expression of the linear part of the transformation */ |
| inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); } |
| /** \returns a writable expression of the linear part of the transformation */ |
| inline LinearPart linear() { return LinearPart(m_matrix,0,0); } |
| |
| /** \returns a read-only expression of the Dim x HDim affine part of the transformation */ |
| inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); } |
| /** \returns a writable expression of the Dim x HDim affine part of the transformation */ |
| inline AffinePart affine() { return take_affine_part::run(m_matrix); } |
| |
| /** \returns a read-only expression of the translation vector of the transformation */ |
| inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); } |
| /** \returns a writable expression of the translation vector of the transformation */ |
| inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); } |
| |
| /** \returns an expression of the product between the transform \c *this and a matrix expression \a other |
| * |
| * The right hand side \a other might be either: |
| * \li a vector of size Dim, |
| * \li an homogeneous vector of size Dim+1, |
| * \li a set of vectors of size Dim x Dynamic, |
| * \li a set of homogeneous vectors of size Dim+1 x Dynamic, |
| * \li a linear transformation matrix of size Dim x Dim, |
| * \li an affine transformation matrix of size Dim x Dim+1, |
| * \li a transformation matrix of size Dim+1 x Dim+1. |
| */ |
| // note: this function is defined here because some compilers cannot find the respective declaration |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType |
| operator * (const EigenBase<OtherDerived> &other) const |
| { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); } |
| |
| /** \returns the product expression of a transformation matrix \a a times a transform \a b |
| * |
| * The left hand side \a other might be either: |
| * \li a linear transformation matrix of size Dim x Dim, |
| * \li an affine transformation matrix of size Dim x Dim+1, |
| * \li a general transformation matrix of size Dim+1 x Dim+1. |
| */ |
| template<typename OtherDerived> friend |
| inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType |
| operator * (const EigenBase<OtherDerived> &a, const Transform &b) |
| { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); } |
| |
| /** \returns The product expression of a transform \a a times a diagonal matrix \a b |
| * |
| * The rhs diagonal matrix is interpreted as an affine scaling transformation. The |
| * product results in a Transform of the same type (mode) as the lhs only if the lhs |
| * mode is no isometry. In that case, the returned transform is an affinity. |
| */ |
| template<typename DiagonalDerived> |
| inline const TransformTimeDiagonalReturnType |
| operator * (const DiagonalBase<DiagonalDerived> &b) const |
| { |
| TransformTimeDiagonalReturnType res(*this); |
| res.linear() *= b; |
| return res; |
| } |
| |
| /** \returns The product expression of a diagonal matrix \a a times a transform \a b |
| * |
| * The lhs diagonal matrix is interpreted as an affine scaling transformation. The |
| * product results in a Transform of the same type (mode) as the lhs only if the lhs |
| * mode is no isometry. In that case, the returned transform is an affinity. |
| */ |
| template<typename DiagonalDerived> |
| friend inline TransformTimeDiagonalReturnType |
| operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b) |
| { |
| TransformTimeDiagonalReturnType res; |
| res.linear().noalias() = a*b.linear(); |
| res.translation().noalias() = a*b.translation(); |
| if (Mode!=int(AffineCompact)) |
| res.matrix().row(Dim) = b.matrix().row(Dim); |
| return res; |
| } |
| |
| template<typename OtherDerived> |
| inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; } |
| |
| /** Concatenates two transformations */ |
| inline const Transform operator * (const Transform& other) const |
| { |
| return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other); |
| } |
| |
| #ifdef __INTEL_COMPILER |
| private: |
| // this intermediate structure permits to workaround a bug in ICC 11: |
| // error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0> |
| // (const Eigen::Transform<double, 3, 2, 0> &) const" |
| // (the meaning of a name may have changed since the template declaration -- the type of the template is: |
| // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>, |
| // Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const") |
| // |
| template<int OtherMode,int OtherOptions> struct icc_11_workaround |
| { |
| typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType; |
| typedef typename ProductType::ResultType ResultType; |
| }; |
| |
| public: |
| /** Concatenates two different transformations */ |
| template<int OtherMode,int OtherOptions> |
| inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType |
| operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const |
| { |
| typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType; |
| return ProductType::run(*this,other); |
| } |
| #else |
| /** Concatenates two different transformations */ |
| template<int OtherMode,int OtherOptions> |
| inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType |
| operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const |
| { |
| return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other); |
| } |
| #endif |
| |
| /** \sa MatrixBase::setIdentity() */ |
| void setIdentity() { m_matrix.setIdentity(); } |
| |
| /** |
| * \brief Returns an identity transformation. |
| * \todo In the future this function should be returning a Transform expression. |
| */ |
| static const Transform Identity() |
| { |
| return Transform(MatrixType::Identity()); |
| } |
| |
| template<typename OtherDerived> |
| inline Transform& scale(const MatrixBase<OtherDerived> &other); |
| |
| template<typename OtherDerived> |
| inline Transform& prescale(const MatrixBase<OtherDerived> &other); |
| |
| inline Transform& scale(const Scalar& s); |
| inline Transform& prescale(const Scalar& s); |
| |
| template<typename OtherDerived> |
| inline Transform& translate(const MatrixBase<OtherDerived> &other); |
| |
| template<typename OtherDerived> |
| inline Transform& pretranslate(const MatrixBase<OtherDerived> &other); |
| |
| template<typename RotationType> |
| inline Transform& rotate(const RotationType& rotation); |
| |
| template<typename RotationType> |
| inline Transform& prerotate(const RotationType& rotation); |
| |
| Transform& shear(const Scalar& sx, const Scalar& sy); |
| Transform& preshear(const Scalar& sx, const Scalar& sy); |
| |
| inline Transform& operator=(const TranslationType& t); |
| inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } |
| inline Transform operator*(const TranslationType& t) const; |
| |
| inline Transform& operator=(const UniformScaling<Scalar>& t); |
| inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); } |
| inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Isometry)> operator*(const UniformScaling<Scalar>& s) const |
| { |
| Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Isometry),Options> res = *this; |
| res.scale(s.factor()); |
| return res; |
| } |
| |
| inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; } |
| |
| template<typename Derived> |
| inline Transform& operator=(const RotationBase<Derived,Dim>& r); |
| template<typename Derived> |
| inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); } |
| template<typename Derived> |
| inline Transform operator*(const RotationBase<Derived,Dim>& r) const; |
| |
| const LinearMatrixType rotation() const; |
| template<typename RotationMatrixType, typename ScalingMatrixType> |
| void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; |
| template<typename ScalingMatrixType, typename RotationMatrixType> |
| void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; |
| |
| template<typename PositionDerived, typename OrientationType, typename ScaleDerived> |
| Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, |
| const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale); |
| |
| inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const; |
| |
| /** \returns a const pointer to the column major internal matrix */ |
| const Scalar* data() const { return m_matrix.data(); } |
| /** \returns a non-const pointer to the column major internal matrix */ |
| Scalar* data() { return m_matrix.data(); } |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template<typename NewScalarType> |
| inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const |
| { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); } |
| |
| /** Copy constructor with scalar type conversion */ |
| template<typename OtherScalarType> |
| inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other) |
| { |
| check_template_params(); |
| m_matrix = other.matrix().template cast<Scalar>(); |
| } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const |
| { return m_matrix.isApprox(other.m_matrix, prec); } |
| |
| /** Sets the last row to [0 ... 0 1] |
| */ |
| void makeAffine() |
| { |
| if(int(Mode)!=int(AffineCompact)) |
| { |
| matrix().template block<1,Dim>(Dim,0).setZero(); |
| matrix().coeffRef(Dim,Dim) = Scalar(1); |
| } |
| } |
| |
| /** \internal |
| * \returns the Dim x Dim linear part if the transformation is affine, |
| * and the HDim x Dim part for projective transformations. |
| */ |
| inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() |
| { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } |
| /** \internal |
| * \returns the Dim x Dim linear part if the transformation is affine, |
| * and the HDim x Dim part for projective transformations. |
| */ |
| inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const |
| { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } |
| |
| /** \internal |
| * \returns the translation part if the transformation is affine, |
| * and the last column for projective transformations. |
| */ |
| inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() |
| { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } |
| /** \internal |
| * \returns the translation part if the transformation is affine, |
| * and the last column for projective transformations. |
| */ |
| inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const |
| { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } |
| |
| |
| #ifdef EIGEN_TRANSFORM_PLUGIN |
| #include EIGEN_TRANSFORM_PLUGIN |
| #endif |
| |
| protected: |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| static EIGEN_STRONG_INLINE void check_template_params() |
| { |
| EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| } |
| #endif |
| |
| }; |
| |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,2,Isometry> Isometry2f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,3,Isometry> Isometry3f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,2,Isometry> Isometry2d; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,3,Isometry> Isometry3d; |
| |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,2,Affine> Affine2f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,3,Affine> Affine3f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,2,Affine> Affine2d; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,3,Affine> Affine3d; |
| |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,2,AffineCompact> AffineCompact2f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,3,AffineCompact> AffineCompact3f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,2,AffineCompact> AffineCompact2d; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,3,AffineCompact> AffineCompact3d; |
| |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,2,Projective> Projective2f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,3,Projective> Projective3f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,2,Projective> Projective2d; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,3,Projective> Projective3d; |
| |
| /************************** |
| *** Optional QT support *** |
| **************************/ |
| |
| #ifdef EIGEN_QT_SUPPORT |
| /** Initializes \c *this from a QMatrix assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim, int Mode,int Options> |
| Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other) |
| { |
| check_template_params(); |
| *this = other; |
| } |
| |
| /** Set \c *this from a QMatrix assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim, int Mode,int Options> |
| Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other) |
| { |
| EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| m_matrix << other.m11(), other.m21(), other.dx(), |
| other.m12(), other.m22(), other.dy(), |
| 0, 0, 1; |
| return *this; |
| } |
| |
| /** \returns a QMatrix from \c *this assuming the dimension is 2. |
| * |
| * \warning this conversion might loss data if \c *this is not affine |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const |
| { |
| check_template_params(); |
| EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), |
| m_matrix.coeff(0,1), m_matrix.coeff(1,1), |
| m_matrix.coeff(0,2), m_matrix.coeff(1,2)); |
| } |
| |
| /** Initializes \c *this from a QTransform assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim, int Mode,int Options> |
| Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other) |
| { |
| check_template_params(); |
| *this = other; |
| } |
| |
| /** Set \c *this from a QTransform assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other) |
| { |
| check_template_params(); |
| EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| if (Mode == int(AffineCompact)) |
| m_matrix << other.m11(), other.m21(), other.dx(), |
| other.m12(), other.m22(), other.dy(); |
| else |
| m_matrix << other.m11(), other.m21(), other.dx(), |
| other.m12(), other.m22(), other.dy(), |
| other.m13(), other.m23(), other.m33(); |
| return *this; |
| } |
| |
| /** \returns a QTransform from \c *this assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const |
| { |
| EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| if (Mode == int(AffineCompact)) |
| return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), |
| m_matrix.coeff(0,1), m_matrix.coeff(1,1), |
| m_matrix.coeff(0,2), m_matrix.coeff(1,2)); |
| else |
| return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0), |
| m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1), |
| m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2)); |
| } |
| #endif |
| |
| /********************* |
| *** Procedural API *** |
| *********************/ |
| |
| /** Applies on the right the non uniform scale transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \sa prescale() |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| template<typename OtherDerived> |
| Transform<Scalar,Dim,Mode,Options>& |
| Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| linearExt().noalias() = (linearExt() * other.asDiagonal()); |
| return *this; |
| } |
| |
| /** Applies on the right a uniform scale of a factor \a c to \c *this |
| * and returns a reference to \c *this. |
| * \sa prescale(Scalar) |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s) |
| { |
| EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| linearExt() *= s; |
| return *this; |
| } |
| |
| /** Applies on the left the non uniform scale transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \sa scale() |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| template<typename OtherDerived> |
| Transform<Scalar,Dim,Mode,Options>& |
| Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)); |
| return *this; |
| } |
| |
| /** Applies on the left a uniform scale of a factor \a c to \c *this |
| * and returns a reference to \c *this. |
| * \sa scale(Scalar) |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s) |
| { |
| EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| m_matrix.template topRows<Dim>() *= s; |
| return *this; |
| } |
| |
| /** Applies on the right the translation matrix represented by the vector \a other |
| * to \c *this and returns a reference to \c *this. |
| * \sa pretranslate() |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| template<typename OtherDerived> |
| Transform<Scalar,Dim,Mode,Options>& |
| Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| translationExt() += linearExt() * other; |
| return *this; |
| } |
| |
| /** Applies on the left the translation matrix represented by the vector \a other |
| * to \c *this and returns a reference to \c *this. |
| * \sa translate() |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| template<typename OtherDerived> |
| Transform<Scalar,Dim,Mode,Options>& |
| Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| if(int(Mode)==int(Projective)) |
| affine() += other * m_matrix.row(Dim); |
| else |
| translation() += other; |
| return *this; |
| } |
| |
| /** Applies on the right the rotation represented by the rotation \a rotation |
| * to \c *this and returns a reference to \c *this. |
| * |
| * The template parameter \a RotationType is the type of the rotation which |
| * must be known by internal::toRotationMatrix<>. |
| * |
| * Natively supported types includes: |
| * - any scalar (2D), |
| * - a Dim x Dim matrix expression, |
| * - a Quaternion (3D), |
| * - a AngleAxis (3D) |
| * |
| * This mechanism is easily extendable to support user types such as Euler angles, |
| * or a pair of Quaternion for 4D rotations. |
| * |
| * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| template<typename RotationType> |
| Transform<Scalar,Dim,Mode,Options>& |
| Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation) |
| { |
| linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation); |
| return *this; |
| } |
| |
| /** Applies on the left the rotation represented by the rotation \a rotation |
| * to \c *this and returns a reference to \c *this. |
| * |
| * See rotate() for further details. |
| * |
| * \sa rotate() |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| template<typename RotationType> |
| Transform<Scalar,Dim,Mode,Options>& |
| Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation) |
| { |
| m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation) |
| * m_matrix.template block<Dim,HDim>(0,0); |
| return *this; |
| } |
| |
| /** Applies on the right the shear transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \warning 2D only. |
| * \sa preshear() |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| Transform<Scalar,Dim,Mode,Options>& |
| Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy) |
| { |
| EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| VectorType tmp = linear().col(0)*sy + linear().col(1); |
| linear() << linear().col(0) + linear().col(1)*sx, tmp; |
| return *this; |
| } |
| |
| /** Applies on the left the shear transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \warning 2D only. |
| * \sa shear() |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| Transform<Scalar,Dim,Mode,Options>& |
| Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy) |
| { |
| EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) |
| m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0); |
| return *this; |
| } |
| |
| /****************************************************** |
| *** Scaling, Translation and Rotation compatibility *** |
| ******************************************************/ |
| |
| template<typename Scalar, int Dim, int Mode, int Options> |
| inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t) |
| { |
| linear().setIdentity(); |
| translation() = t.vector(); |
| makeAffine(); |
| return *this; |
| } |
| |
| template<typename Scalar, int Dim, int Mode, int Options> |
| inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const |
| { |
| Transform res = *this; |
| res.translate(t.vector()); |
| return res; |
| } |
| |
| template<typename Scalar, int Dim, int Mode, int Options> |
| inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s) |
| { |
| m_matrix.setZero(); |
| linear().diagonal().fill(s.factor()); |
| makeAffine(); |
| return *this; |
| } |
| |
| template<typename Scalar, int Dim, int Mode, int Options> |
| template<typename Derived> |
| inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r) |
| { |
| linear() = internal::toRotationMatrix<Scalar,Dim>(r); |
| translation().setZero(); |
| makeAffine(); |
| return *this; |
| } |
| |
| template<typename Scalar, int Dim, int Mode, int Options> |
| template<typename Derived> |
| inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const |
| { |
| Transform res = *this; |
| res.rotate(r.derived()); |
| return res; |
| } |
| |
| /************************ |
| *** Special functions *** |
| ************************/ |
| |
| /** \returns the rotation part of the transformation |
| * |
| * |
| * \svd_module |
| * |
| * \sa computeRotationScaling(), computeScalingRotation(), class SVD |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType |
| Transform<Scalar,Dim,Mode,Options>::rotation() const |
| { |
| LinearMatrixType result; |
| computeRotationScaling(&result, (LinearMatrixType*)0); |
| return result; |
| } |
| |
| |
| /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being |
| * not necessarily positive. |
| * |
| * If either pointer is zero, the corresponding computation is skipped. |
| * |
| * |
| * |
| * \svd_module |
| * |
| * \sa computeScalingRotation(), rotation(), class SVD |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| template<typename RotationMatrixType, typename ScalingMatrixType> |
| void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const |
| { |
| JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); |
| |
| Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 |
| VectorType sv(svd.singularValues()); |
| sv.coeffRef(0) *= x; |
| if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint()); |
| if(rotation) |
| { |
| LinearMatrixType m(svd.matrixU()); |
| m.col(0) /= x; |
| rotation->lazyAssign(m * svd.matrixV().adjoint()); |
| } |
| } |
| |
| /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being |
| * not necessarily positive. |
| * |
| * If either pointer is zero, the corresponding computation is skipped. |
| * |
| * |
| * |
| * \svd_module |
| * |
| * \sa computeRotationScaling(), rotation(), class SVD |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| template<typename ScalingMatrixType, typename RotationMatrixType> |
| void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const |
| { |
| JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); |
| |
| Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 |
| VectorType sv(svd.singularValues()); |
| sv.coeffRef(0) *= x; |
| if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint()); |
| if(rotation) |
| { |
| LinearMatrixType m(svd.matrixU()); |
| m.col(0) /= x; |
| rotation->lazyAssign(m * svd.matrixV().adjoint()); |
| } |
| } |
| |
| /** Convenient method to set \c *this from a position, orientation and scale |
| * of a 3D object. |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| template<typename PositionDerived, typename OrientationType, typename ScaleDerived> |
| Transform<Scalar,Dim,Mode,Options>& |
| Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, |
| const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale) |
| { |
| linear() = internal::toRotationMatrix<Scalar,Dim>(orientation); |
| linear() *= scale.asDiagonal(); |
| translation() = position; |
| makeAffine(); |
| return *this; |
| } |
| |
| namespace internal { |
| |
| // selector needed to avoid taking the inverse of a 3x4 matrix |
| template<typename TransformType, int Mode=TransformType::Mode> |
| struct projective_transform_inverse |
| { |
| static inline void run(const TransformType&, TransformType&) |
| {} |
| }; |
| |
| template<typename TransformType> |
| struct projective_transform_inverse<TransformType, Projective> |
| { |
| static inline void run(const TransformType& m, TransformType& res) |
| { |
| res.matrix() = m.matrix().inverse(); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| |
| /** |
| * |
| * \returns the inverse transformation according to some given knowledge |
| * on \c *this. |
| * |
| * \param hint allows to optimize the inversion process when the transformation |
| * is known to be not a general transformation (optional). The possible values are: |
| * - #Projective if the transformation is not necessarily affine, i.e., if the |
| * last row is not guaranteed to be [0 ... 0 1] |
| * - #Affine if the last row can be assumed to be [0 ... 0 1] |
| * - #Isometry if the transformation is only a concatenations of translations |
| * and rotations. |
| * The default is the template class parameter \c Mode. |
| * |
| * \warning unless \a traits is always set to NoShear or NoScaling, this function |
| * requires the generic inverse method of MatrixBase defined in the LU module. If |
| * you forget to include this module, then you will get hard to debug linking errors. |
| * |
| * \sa MatrixBase::inverse() |
| */ |
| template<typename Scalar, int Dim, int Mode, int Options> |
| Transform<Scalar,Dim,Mode,Options> |
| Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const |
| { |
| Transform res; |
| if (hint == Projective) |
| { |
| internal::projective_transform_inverse<Transform>::run(*this, res); |
| } |
| else |
| { |
| if (hint == Isometry) |
| { |
| res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose(); |
| } |
| else if(hint&Affine) |
| { |
| res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse(); |
| } |
| else |
| { |
| eigen_assert(false && "Invalid transform traits in Transform::Inverse"); |
| } |
| // translation and remaining parts |
| res.matrix().template topRightCorner<Dim,1>() |
| = - res.matrix().template topLeftCorner<Dim,Dim>() * translation(); |
| res.makeAffine(); // we do need this, because in the beginning res is uninitialized |
| } |
| return res; |
| } |
| |
| namespace internal { |
| |
| /***************************************************** |
| *** Specializations of take affine part *** |
| *****************************************************/ |
| |
| template<typename TransformType> struct transform_take_affine_part { |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef typename TransformType::AffinePart AffinePart; |
| typedef typename TransformType::ConstAffinePart ConstAffinePart; |
| static inline AffinePart run(MatrixType& m) |
| { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } |
| static inline ConstAffinePart run(const MatrixType& m) |
| { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } |
| }; |
| |
| template<typename Scalar, int Dim, int Options> |
| struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > { |
| typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType; |
| static inline MatrixType& run(MatrixType& m) { return m; } |
| static inline const MatrixType& run(const MatrixType& m) { return m; } |
| }; |
| |
| /***************************************************** |
| *** Specializations of construct from matrix *** |
| *****************************************************/ |
| |
| template<typename Other, int Mode, int Options, int Dim, int HDim> |
| struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim> |
| { |
| static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) |
| { |
| transform->linear() = other; |
| transform->translation().setZero(); |
| transform->makeAffine(); |
| } |
| }; |
| |
| template<typename Other, int Mode, int Options, int Dim, int HDim> |
| struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim> |
| { |
| static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) |
| { |
| transform->affine() = other; |
| transform->makeAffine(); |
| } |
| }; |
| |
| template<typename Other, int Mode, int Options, int Dim, int HDim> |
| struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim> |
| { |
| static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) |
| { transform->matrix() = other; } |
| }; |
| |
| template<typename Other, int Options, int Dim, int HDim> |
| struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim> |
| { |
| static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other) |
| { transform->matrix() = other.template block<Dim,HDim>(0,0); } |
| }; |
| |
| /********************************************************** |
| *** Specializations of operator* with rhs EigenBase *** |
| **********************************************************/ |
| |
| template<int LhsMode,int RhsMode> |
| struct transform_product_result |
| { |
| enum |
| { |
| Mode = |
| (LhsMode == (int)Projective || RhsMode == (int)Projective ) ? Projective : |
| (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine : |
| (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact : |
| (LhsMode == (int)Isometry || RhsMode == (int)Isometry ) ? Isometry : Projective |
| }; |
| }; |
| |
| template< typename TransformType, typename MatrixType > |
| struct transform_right_product_impl< TransformType, MatrixType, 0 > |
| { |
| typedef typename MatrixType::PlainObject ResultType; |
| |
| static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) |
| { |
| return T.matrix() * other; |
| } |
| }; |
| |
| template< typename TransformType, typename MatrixType > |
| struct transform_right_product_impl< TransformType, MatrixType, 1 > |
| { |
| enum { |
| Dim = TransformType::Dim, |
| HDim = TransformType::HDim, |
| OtherRows = MatrixType::RowsAtCompileTime, |
| OtherCols = MatrixType::ColsAtCompileTime |
| }; |
| |
| typedef typename MatrixType::PlainObject ResultType; |
| |
| static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) |
| { |
| EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); |
| |
| typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs; |
| |
| ResultType res(other.rows(),other.cols()); |
| TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other; |
| res.row(OtherRows-1) = other.row(OtherRows-1); |
| |
| return res; |
| } |
| }; |
| |
| template< typename TransformType, typename MatrixType > |
| struct transform_right_product_impl< TransformType, MatrixType, 2 > |
| { |
| enum { |
| Dim = TransformType::Dim, |
| HDim = TransformType::HDim, |
| OtherRows = MatrixType::RowsAtCompileTime, |
| OtherCols = MatrixType::ColsAtCompileTime |
| }; |
| |
| typedef typename MatrixType::PlainObject ResultType; |
| |
| static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) |
| { |
| EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); |
| |
| typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs; |
| ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols())); |
| TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other; |
| |
| return res; |
| } |
| }; |
| |
| /********************************************************** |
| *** Specializations of operator* with lhs EigenBase *** |
| **********************************************************/ |
| |
| // generic HDim x HDim matrix * T => Projective |
| template<typename Other,int Mode, int Options, int Dim, int HDim> |
| struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType; |
| static ResultType run(const Other& other,const TransformType& tr) |
| { return ResultType(other * tr.matrix()); } |
| }; |
| |
| // generic HDim x HDim matrix * AffineCompact => Projective |
| template<typename Other, int Options, int Dim, int HDim> |
| struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType; |
| static ResultType run(const Other& other,const TransformType& tr) |
| { |
| ResultType res; |
| res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix(); |
| res.matrix().col(Dim) += other.col(Dim); |
| return res; |
| } |
| }; |
| |
| // affine matrix * T |
| template<typename Other,int Mode, int Options, int Dim, int HDim> |
| struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef TransformType ResultType; |
| static ResultType run(const Other& other,const TransformType& tr) |
| { |
| ResultType res; |
| res.affine().noalias() = other * tr.matrix(); |
| res.matrix().row(Dim) = tr.matrix().row(Dim); |
| return res; |
| } |
| }; |
| |
| // affine matrix * AffineCompact |
| template<typename Other, int Options, int Dim, int HDim> |
| struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef TransformType ResultType; |
| static ResultType run(const Other& other,const TransformType& tr) |
| { |
| ResultType res; |
| res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix(); |
| res.translation() += other.col(Dim); |
| return res; |
| } |
| }; |
| |
| // linear matrix * T |
| template<typename Other,int Mode, int Options, int Dim, int HDim> |
| struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef TransformType ResultType; |
| static ResultType run(const Other& other, const TransformType& tr) |
| { |
| TransformType res; |
| if(Mode!=int(AffineCompact)) |
| res.matrix().row(Dim) = tr.matrix().row(Dim); |
| res.matrix().template topRows<Dim>().noalias() |
| = other * tr.matrix().template topRows<Dim>(); |
| return res; |
| } |
| }; |
| |
| /********************************************************** |
| *** Specializations of operator* with another Transform *** |
| **********************************************************/ |
| |
| template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> |
| struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false > |
| { |
| enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode }; |
| typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs; |
| typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs; |
| typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType; |
| static ResultType run(const Lhs& lhs, const Rhs& rhs) |
| { |
| ResultType res; |
| res.linear() = lhs.linear() * rhs.linear(); |
| res.translation() = lhs.linear() * rhs.translation() + lhs.translation(); |
| res.makeAffine(); |
| return res; |
| } |
| }; |
| |
| template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> |
| struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true > |
| { |
| typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs; |
| typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs; |
| typedef Transform<Scalar,Dim,Projective> ResultType; |
| static ResultType run(const Lhs& lhs, const Rhs& rhs) |
| { |
| return ResultType( lhs.matrix() * rhs.matrix() ); |
| } |
| }; |
| |
| template<typename Scalar, int Dim, int LhsOptions, int RhsOptions> |
| struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true > |
| { |
| typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs; |
| typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs; |
| typedef Transform<Scalar,Dim,Projective> ResultType; |
| static ResultType run(const Lhs& lhs, const Rhs& rhs) |
| { |
| ResultType res; |
| res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix(); |
| res.matrix().row(Dim) = rhs.matrix().row(Dim); |
| return res; |
| } |
| }; |
| |
| template<typename Scalar, int Dim, int LhsOptions, int RhsOptions> |
| struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true > |
| { |
| typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs; |
| typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs; |
| typedef Transform<Scalar,Dim,Projective> ResultType; |
| static ResultType run(const Lhs& lhs, const Rhs& rhs) |
| { |
| ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix()); |
| res.matrix().col(Dim) += lhs.matrix().col(Dim); |
| return res; |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_TRANSFORM_H |