| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_BICGSTAB_H |
| #define EIGEN_BICGSTAB_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** \internal Low-level bi conjugate gradient stabilized algorithm |
| * \param mat The matrix A |
| * \param rhs The right hand side vector b |
| * \param x On input and initial solution, on output the computed solution. |
| * \param precond A preconditioner being able to efficiently solve for an |
| * approximation of Ax=b (regardless of b) |
| * \param iters On input the max number of iteration, on output the number of performed iterations. |
| * \param tol_error On input the tolerance error, on output an estimation of the relative error. |
| * \return false in the case of numerical issue, for example a break down of BiCGSTAB. |
| */ |
| template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> |
| bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x, |
| const Preconditioner& precond, int& iters, |
| typename Dest::RealScalar& tol_error) |
| { |
| using std::sqrt; |
| using std::abs; |
| typedef typename Dest::RealScalar RealScalar; |
| typedef typename Dest::Scalar Scalar; |
| typedef Matrix<Scalar,Dynamic,1> VectorType; |
| RealScalar tol = tol_error; |
| int maxIters = iters; |
| |
| int n = mat.cols(); |
| VectorType r = rhs - mat * x; |
| VectorType r0 = r; |
| |
| RealScalar r0_sqnorm = r0.squaredNorm(); |
| Scalar rho = 1; |
| Scalar alpha = 1; |
| Scalar w = 1; |
| |
| VectorType v = VectorType::Zero(n), p = VectorType::Zero(n); |
| VectorType y(n), z(n); |
| VectorType kt(n), ks(n); |
| |
| VectorType s(n), t(n); |
| |
| RealScalar tol2 = tol*tol; |
| int i = 0; |
| |
| while ( r.squaredNorm()/r0_sqnorm > tol2 && i<maxIters ) |
| { |
| Scalar rho_old = rho; |
| |
| rho = r0.dot(r); |
| if (rho == Scalar(0)) return false; /* New search directions cannot be found */ |
| Scalar beta = (rho/rho_old) * (alpha / w); |
| p = r + beta * (p - w * v); |
| |
| y = precond.solve(p); |
| |
| v.noalias() = mat * y; |
| |
| alpha = rho / r0.dot(v); |
| s = r - alpha * v; |
| |
| z = precond.solve(s); |
| t.noalias() = mat * z; |
| |
| w = t.dot(s) / t.squaredNorm(); |
| x += alpha * y + w * z; |
| r = s - w * t; |
| ++i; |
| } |
| tol_error = sqrt(r.squaredNorm()/r0_sqnorm); |
| iters = i; |
| return true; |
| } |
| |
| } |
| |
| template< typename _MatrixType, |
| typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > |
| class BiCGSTAB; |
| |
| namespace internal { |
| |
| template< typename _MatrixType, typename _Preconditioner> |
| struct traits<BiCGSTAB<_MatrixType,_Preconditioner> > |
| { |
| typedef _MatrixType MatrixType; |
| typedef _Preconditioner Preconditioner; |
| }; |
| |
| } |
| |
| /** \ingroup IterativeLinearSolvers_Module |
| * \brief A bi conjugate gradient stabilized solver for sparse square problems |
| * |
| * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient |
| * stabilized algorithm. The vectors x and b can be either dense or sparse. |
| * |
| * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. |
| * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner |
| * |
| * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() |
| * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations |
| * and NumTraits<Scalar>::epsilon() for the tolerance. |
| * |
| * This class can be used as the direct solver classes. Here is a typical usage example: |
| * \code |
| * int n = 10000; |
| * VectorXd x(n), b(n); |
| * SparseMatrix<double> A(n,n); |
| * // fill A and b |
| * BiCGSTAB<SparseMatrix<double> > solver; |
| * solver(A); |
| * x = solver.solve(b); |
| * std::cout << "#iterations: " << solver.iterations() << std::endl; |
| * std::cout << "estimated error: " << solver.error() << std::endl; |
| * // update b, and solve again |
| * x = solver.solve(b); |
| * \endcode |
| * |
| * By default the iterations start with x=0 as an initial guess of the solution. |
| * One can control the start using the solveWithGuess() method. Here is a step by |
| * step execution example starting with a random guess and printing the evolution |
| * of the estimated error: |
| * * \code |
| * x = VectorXd::Random(n); |
| * solver.setMaxIterations(1); |
| * int i = 0; |
| * do { |
| * x = solver.solveWithGuess(b,x); |
| * std::cout << i << " : " << solver.error() << std::endl; |
| * ++i; |
| * } while (solver.info()!=Success && i<100); |
| * \endcode |
| * Note that such a step by step excution is slightly slower. |
| * |
| * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner |
| */ |
| template< typename _MatrixType, typename _Preconditioner> |
| class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> > |
| { |
| typedef IterativeSolverBase<BiCGSTAB> Base; |
| using Base::mp_matrix; |
| using Base::m_error; |
| using Base::m_iterations; |
| using Base::m_info; |
| using Base::m_isInitialized; |
| public: |
| typedef _MatrixType MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef _Preconditioner Preconditioner; |
| |
| public: |
| |
| /** Default constructor. */ |
| BiCGSTAB() : Base() {} |
| |
| /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
| * |
| * This constructor is a shortcut for the default constructor followed |
| * by a call to compute(). |
| * |
| * \warning this class stores a reference to the matrix A as well as some |
| * precomputed values that depend on it. Therefore, if \a A is changed |
| * this class becomes invalid. Call compute() to update it with the new |
| * matrix A, or modify a copy of A. |
| */ |
| BiCGSTAB(const MatrixType& A) : Base(A) {} |
| |
| ~BiCGSTAB() {} |
| |
| /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A |
| * \a x0 as an initial solution. |
| * |
| * \sa compute() |
| */ |
| template<typename Rhs,typename Guess> |
| inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess> |
| solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const |
| { |
| eigen_assert(m_isInitialized && "BiCGSTAB is not initialized."); |
| eigen_assert(Base::rows()==b.rows() |
| && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b"); |
| return internal::solve_retval_with_guess |
| <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0); |
| } |
| |
| /** \internal */ |
| template<typename Rhs,typename Dest> |
| void _solveWithGuess(const Rhs& b, Dest& x) const |
| { |
| bool failed = false; |
| for(int j=0; j<b.cols(); ++j) |
| { |
| m_iterations = Base::maxIterations(); |
| m_error = Base::m_tolerance; |
| |
| typename Dest::ColXpr xj(x,j); |
| if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error)) |
| failed = true; |
| } |
| m_info = failed ? NumericalIssue |
| : m_error <= Base::m_tolerance ? Success |
| : NoConvergence; |
| m_isInitialized = true; |
| } |
| |
| /** \internal */ |
| template<typename Rhs,typename Dest> |
| void _solve(const Rhs& b, Dest& x) const |
| { |
| x.setZero(); |
| _solveWithGuess(b,x); |
| } |
| |
| protected: |
| |
| }; |
| |
| |
| namespace internal { |
| |
| template<typename _MatrixType, typename _Preconditioner, typename Rhs> |
| struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs> |
| : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs> |
| { |
| typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec; |
| EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
| |
| template<typename Dest> void evalTo(Dest& dst) const |
| { |
| dec()._solve(rhs(),dst); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_BICGSTAB_H |