| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_COMPRESSED_STORAGE_H |
| #define EIGEN_COMPRESSED_STORAGE_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** \internal |
| * Stores a sparse set of values as a list of values and a list of indices. |
| * |
| */ |
| template<typename _Scalar,typename _Index> |
| class CompressedStorage |
| { |
| public: |
| |
| typedef _Scalar Scalar; |
| typedef _Index Index; |
| |
| protected: |
| |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| public: |
| |
| CompressedStorage() |
| : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) |
| {} |
| |
| CompressedStorage(size_t size) |
| : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) |
| { |
| resize(size); |
| } |
| |
| CompressedStorage(const CompressedStorage& other) |
| : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) |
| { |
| *this = other; |
| } |
| |
| CompressedStorage& operator=(const CompressedStorage& other) |
| { |
| resize(other.size()); |
| memcpy(m_values, other.m_values, m_size * sizeof(Scalar)); |
| memcpy(m_indices, other.m_indices, m_size * sizeof(Index)); |
| return *this; |
| } |
| |
| void swap(CompressedStorage& other) |
| { |
| std::swap(m_values, other.m_values); |
| std::swap(m_indices, other.m_indices); |
| std::swap(m_size, other.m_size); |
| std::swap(m_allocatedSize, other.m_allocatedSize); |
| } |
| |
| ~CompressedStorage() |
| { |
| delete[] m_values; |
| delete[] m_indices; |
| } |
| |
| void reserve(size_t size) |
| { |
| size_t newAllocatedSize = m_size + size; |
| if (newAllocatedSize > m_allocatedSize) |
| reallocate(newAllocatedSize); |
| } |
| |
| void squeeze() |
| { |
| if (m_allocatedSize>m_size) |
| reallocate(m_size); |
| } |
| |
| void resize(size_t size, float reserveSizeFactor = 0) |
| { |
| if (m_allocatedSize<size) |
| reallocate(size + size_t(reserveSizeFactor*size)); |
| m_size = size; |
| } |
| |
| void append(const Scalar& v, Index i) |
| { |
| Index id = static_cast<Index>(m_size); |
| resize(m_size+1, 1); |
| m_values[id] = v; |
| m_indices[id] = i; |
| } |
| |
| inline size_t size() const { return m_size; } |
| inline size_t allocatedSize() const { return m_allocatedSize; } |
| inline void clear() { m_size = 0; } |
| |
| inline Scalar& value(size_t i) { return m_values[i]; } |
| inline const Scalar& value(size_t i) const { return m_values[i]; } |
| |
| inline Index& index(size_t i) { return m_indices[i]; } |
| inline const Index& index(size_t i) const { return m_indices[i]; } |
| |
| static CompressedStorage Map(Index* indices, Scalar* values, size_t size) |
| { |
| CompressedStorage res; |
| res.m_indices = indices; |
| res.m_values = values; |
| res.m_allocatedSize = res.m_size = size; |
| return res; |
| } |
| |
| /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */ |
| inline Index searchLowerIndex(Index key) const |
| { |
| return searchLowerIndex(0, m_size, key); |
| } |
| |
| /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */ |
| inline Index searchLowerIndex(size_t start, size_t end, Index key) const |
| { |
| while(end>start) |
| { |
| size_t mid = (end+start)>>1; |
| if (m_indices[mid]<key) |
| start = mid+1; |
| else |
| end = mid; |
| } |
| return static_cast<Index>(start); |
| } |
| |
| /** \returns the stored value at index \a key |
| * If the value does not exist, then the value \a defaultValue is returned without any insertion. */ |
| inline Scalar at(Index key, const Scalar& defaultValue = Scalar(0)) const |
| { |
| if (m_size==0) |
| return defaultValue; |
| else if (key==m_indices[m_size-1]) |
| return m_values[m_size-1]; |
| // ^^ optimization: let's first check if it is the last coefficient |
| // (very common in high level algorithms) |
| const size_t id = searchLowerIndex(0,m_size-1,key); |
| return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue; |
| } |
| |
| /** Like at(), but the search is performed in the range [start,end) */ |
| inline Scalar atInRange(size_t start, size_t end, Index key, const Scalar& defaultValue = Scalar(0)) const |
| { |
| if (start>=end) |
| return Scalar(0); |
| else if (end>start && key==m_indices[end-1]) |
| return m_values[end-1]; |
| // ^^ optimization: let's first check if it is the last coefficient |
| // (very common in high level algorithms) |
| const size_t id = searchLowerIndex(start,end-1,key); |
| return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue; |
| } |
| |
| /** \returns a reference to the value at index \a key |
| * If the value does not exist, then the value \a defaultValue is inserted |
| * such that the keys are sorted. */ |
| inline Scalar& atWithInsertion(Index key, const Scalar& defaultValue = Scalar(0)) |
| { |
| size_t id = searchLowerIndex(0,m_size,key); |
| if (id>=m_size || m_indices[id]!=key) |
| { |
| resize(m_size+1,1); |
| for (size_t j=m_size-1; j>id; --j) |
| { |
| m_indices[j] = m_indices[j-1]; |
| m_values[j] = m_values[j-1]; |
| } |
| m_indices[id] = key; |
| m_values[id] = defaultValue; |
| } |
| return m_values[id]; |
| } |
| |
| void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) |
| { |
| size_t k = 0; |
| size_t n = size(); |
| for (size_t i=0; i<n; ++i) |
| { |
| if (!internal::isMuchSmallerThan(value(i), reference, epsilon)) |
| { |
| value(k) = value(i); |
| index(k) = index(i); |
| ++k; |
| } |
| } |
| resize(k,0); |
| } |
| |
| protected: |
| |
| inline void reallocate(size_t size) |
| { |
| Scalar* newValues = new Scalar[size]; |
| Index* newIndices = new Index[size]; |
| size_t copySize = (std::min)(size, m_size); |
| // copy |
| internal::smart_copy(m_values, m_values+copySize, newValues); |
| internal::smart_copy(m_indices, m_indices+copySize, newIndices); |
| // delete old stuff |
| delete[] m_values; |
| delete[] m_indices; |
| m_values = newValues; |
| m_indices = newIndices; |
| m_allocatedSize = size; |
| } |
| |
| protected: |
| Scalar* m_values; |
| Index* m_indices; |
| size_t m_size; |
| size_t m_allocatedSize; |
| |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_COMPRESSED_STORAGE_H |