| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/LU> |
| |
| template<typename MatrixType> void inverse(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| /* this test covers the following files: |
| Inverse.h |
| */ |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; |
| |
| MatrixType m1(rows, cols), |
| m2(rows, cols), |
| identity = MatrixType::Identity(rows, rows); |
| createRandomPIMatrixOfRank(rows,rows,rows,m1); |
| m2 = m1.inverse(); |
| VERIFY_IS_APPROX(m1, m2.inverse() ); |
| |
| VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5)); |
| |
| VERIFY_IS_APPROX(identity, m1.inverse() * m1 ); |
| VERIFY_IS_APPROX(identity, m1 * m1.inverse() ); |
| |
| VERIFY_IS_APPROX(m1, m1.inverse().inverse() ); |
| |
| // since for the general case we implement separately row-major and col-major, test that |
| VERIFY_IS_APPROX(MatrixType(m1.transpose().inverse()), MatrixType(m1.inverse().transpose())); |
| |
| #if !defined(EIGEN_TEST_PART_5) && !defined(EIGEN_TEST_PART_6) |
| //computeInverseAndDetWithCheck tests |
| //First: an invertible matrix |
| bool invertible; |
| RealScalar det; |
| |
| m2.setZero(); |
| m1.computeInverseAndDetWithCheck(m2, det, invertible); |
| VERIFY(invertible); |
| VERIFY_IS_APPROX(identity, m1*m2); |
| VERIFY_IS_APPROX(det, m1.determinant()); |
| |
| m2.setZero(); |
| m1.computeInverseWithCheck(m2, invertible); |
| VERIFY(invertible); |
| VERIFY_IS_APPROX(identity, m1*m2); |
| |
| //Second: a rank one matrix (not invertible, except for 1x1 matrices) |
| VectorType v3 = VectorType::Random(rows); |
| MatrixType m3 = v3*v3.transpose(), m4(rows,cols); |
| m3.computeInverseAndDetWithCheck(m4, det, invertible); |
| VERIFY( rows==1 ? invertible : !invertible ); |
| VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(det-m3.determinant()), RealScalar(1)); |
| m3.computeInverseWithCheck(m4, invertible); |
| VERIFY( rows==1 ? invertible : !invertible ); |
| #endif |
| |
| // check in-place inversion |
| if(MatrixType::RowsAtCompileTime>=2 && MatrixType::RowsAtCompileTime<=4) |
| { |
| // in-place is forbidden |
| VERIFY_RAISES_ASSERT(m1 = m1.inverse()); |
| } |
| else |
| { |
| m2 = m1.inverse(); |
| m1 = m1.inverse(); |
| VERIFY_IS_APPROX(m1,m2); |
| } |
| } |
| |
| void test_inverse() |
| { |
| int s; |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) ); |
| CALL_SUBTEST_2( inverse(Matrix2d()) ); |
| CALL_SUBTEST_3( inverse(Matrix3f()) ); |
| CALL_SUBTEST_4( inverse(Matrix4f()) ); |
| CALL_SUBTEST_4( inverse(Matrix<float,4,4,DontAlign>()) ); |
| s = internal::random<int>(50,320); |
| CALL_SUBTEST_5( inverse(MatrixXf(s,s)) ); |
| s = internal::random<int>(25,100); |
| CALL_SUBTEST_6( inverse(MatrixXcd(s,s)) ); |
| CALL_SUBTEST_7( inverse(Matrix4d()) ); |
| CALL_SUBTEST_7( inverse(Matrix<double,4,4,DontAlign>()) ); |
| } |
| EIGEN_UNUSED_VARIABLE(s) |
| } |