| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_LDLT_H |
| #define EIGEN_LDLT_H |
| |
| /** \ingroup cholesky_Module |
| * |
| * \class LDLT |
| * |
| * \brief Robust Cholesky decomposition of a matrix and associated features |
| * |
| * \param MatrixType the type of the matrix of which we are computing the LDL^T Cholesky decomposition |
| * |
| * This class performs a Cholesky decomposition without square root of a symmetric, positive definite |
| * matrix A such that A = L D L^* = U^* D U, where L is lower triangular with a unit diagonal |
| * and D is a diagonal matrix. |
| * |
| * Compared to a standard Cholesky decomposition, avoiding the square roots allows for faster and more |
| * stable computation. |
| * |
| * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, |
| * the strict lower part does not have to store correct values. |
| * |
| * \sa MatrixBase::ldlt(), class LLT |
| */ |
| template<typename MatrixType> class LDLT |
| { |
| public: |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; |
| |
| LDLT(const MatrixType& matrix) |
| : m_matrix(matrix.rows(), matrix.cols()) |
| { |
| compute(matrix); |
| } |
| |
| /** \returns the lower triangular matrix L */ |
| inline Part<MatrixType, UnitLowerTriangular> matrixL(void) const { return m_matrix; } |
| |
| /** \returns the coefficients of the diagonal matrix D */ |
| inline DiagonalCoeffs<MatrixType> vectorD(void) const { return m_matrix.diagonal(); } |
| |
| /** \returns true if the matrix is positive definite */ |
| inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; } |
| |
| template<typename RhsDerived, typename ResDerived> |
| bool solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const; |
| |
| template<typename Derived> |
| bool solveInPlace(MatrixBase<Derived> &bAndX) const; |
| |
| void compute(const MatrixType& matrix); |
| |
| protected: |
| /** \internal |
| * Used to compute and store the cholesky decomposition A = L D L^* = U^* D U. |
| * The strict upper part is used during the decomposition, the strict lower |
| * part correspond to the coefficients of L (its diagonal is equal to 1 and |
| * is not stored), and the diagonal entries correspond to D. |
| */ |
| MatrixType m_matrix; |
| |
| bool m_isPositiveDefinite; |
| }; |
| |
| /** Compute / recompute the LLT decomposition A = L D L^* = U^* D U of \a matrix |
| */ |
| template<typename MatrixType> |
| void LDLT<MatrixType>::compute(const MatrixType& a) |
| { |
| assert(a.rows()==a.cols()); |
| const int size = a.rows(); |
| m_matrix.resize(size, size); |
| m_isPositiveDefinite = true; |
| const RealScalar eps = ei_sqrt(precision<Scalar>()); |
| |
| if (size<=1) |
| { |
| m_matrix = a; |
| return; |
| } |
| |
| // Let's preallocate a temporay vector to evaluate the matrix-vector product into it. |
| // Unlike the standard LLT decomposition, here we cannot evaluate it to the destination |
| // matrix because it a sub-row which is not compatible suitable for efficient packet evaluation. |
| // (at least if we assume the matrix is col-major) |
| Matrix<Scalar,MatrixType::RowsAtCompileTime,1> _temporary(size); |
| |
| // Note that, in this algorithm the rows of the strict upper part of m_matrix is used to store |
| // column vector, thus the strange .conjugate() and .transpose()... |
| |
| m_matrix.row(0) = a.row(0).conjugate(); |
| m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix.coeff(0,0); |
| for (int j = 1; j < size; ++j) |
| { |
| RealScalar tmp = ei_real(a.coeff(j,j) - (m_matrix.row(j).start(j) * m_matrix.col(j).start(j).conjugate()).coeff(0,0)); |
| m_matrix.coeffRef(j,j) = tmp; |
| |
| if (tmp < eps) |
| { |
| m_isPositiveDefinite = false; |
| return; |
| } |
| |
| int endSize = size-j-1; |
| if (endSize>0) |
| { |
| _temporary.end(endSize) = ( m_matrix.block(j+1,0, endSize, j) |
| * m_matrix.col(j).start(j).conjugate() ).lazy(); |
| |
| m_matrix.row(j).end(endSize) = a.row(j).end(endSize).conjugate() |
| - _temporary.end(endSize).transpose(); |
| |
| m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / tmp; |
| } |
| } |
| } |
| |
| /** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A. |
| * The result is stored in \a result |
| * |
| * \returns true in case of success, false otherwise. |
| * |
| * In other words, it computes \f$ b = A^{-1} b \f$ with |
| * \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left. |
| * |
| * \sa LDLT::solveInPlace(), MatrixBase::ldlt() |
| */ |
| template<typename MatrixType> |
| template<typename RhsDerived, typename ResDerived> |
| bool LDLT<MatrixType> |
| ::solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const |
| { |
| const int size = m_matrix.rows(); |
| ei_assert(size==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b"); |
| *result = b; |
| return solveInPlace(*result); |
| } |
| |
| /** This is the \em in-place version of solve(). |
| * |
| * \param bAndX represents both the right-hand side matrix b and result x. |
| * |
| * This version avoids a copy when the right hand side matrix b is not |
| * needed anymore. |
| * |
| * \sa LDLT::solve(), MatrixBase::ldlt() |
| */ |
| template<typename MatrixType> |
| template<typename Derived> |
| bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const |
| { |
| const int size = m_matrix.rows(); |
| ei_assert(size==bAndX.rows()); |
| if (!m_isPositiveDefinite) |
| return false; |
| matrixL().solveTriangularInPlace(bAndX); |
| bAndX = (m_matrix.cwise().inverse().template part<Diagonal>() * bAndX).lazy(); |
| m_matrix.adjoint().template part<UnitUpperTriangular>().solveTriangularInPlace(bAndX); |
| return true; |
| } |
| |
| /** \cholesky_module |
| * \returns the Cholesky decomposition without square root of \c *this |
| */ |
| template<typename Derived> |
| inline const LDLT<typename MatrixBase<Derived>::PlainMatrixType> |
| MatrixBase<Derived>::ldlt() const |
| { |
| return derived(); |
| } |
| |
| #endif // EIGEN_LDLT_H |