| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
| #define EIGEN_USE_GPU |
| |
| #include "main.h" |
| #include "OffByOneScalar.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| #include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h> |
| |
| using Eigen::RowMajor; |
| using Eigen::Tensor; |
| |
| // Context for evaluation on cpu |
| struct CPUContext { |
| CPUContext(const Eigen::Tensor<float, 3>& in1, Eigen::Tensor<float, 3>& in2, Eigen::Tensor<float, 3>& out) |
| : in1_(in1), in2_(in2), out_(out), kernel_1d_(2), kernel_2d_(2, 2), kernel_3d_(2, 2, 2) { |
| kernel_1d_(0) = 3.14f; |
| kernel_1d_(1) = 2.7f; |
| |
| kernel_2d_(0, 0) = 3.14f; |
| kernel_2d_(1, 0) = 2.7f; |
| kernel_2d_(0, 1) = 0.2f; |
| kernel_2d_(1, 1) = 7.0f; |
| |
| kernel_3d_(0, 0, 0) = 3.14f; |
| kernel_3d_(0, 1, 0) = 2.7f; |
| kernel_3d_(0, 0, 1) = 0.2f; |
| kernel_3d_(0, 1, 1) = 7.0f; |
| kernel_3d_(1, 0, 0) = -1.0f; |
| kernel_3d_(1, 1, 0) = -0.3f; |
| kernel_3d_(1, 0, 1) = -0.7f; |
| kernel_3d_(1, 1, 1) = -0.5f; |
| } |
| |
| const Eigen::DefaultDevice& device() const { return cpu_device_; } |
| |
| const Eigen::Tensor<float, 3>& in1() const { return in1_; } |
| const Eigen::Tensor<float, 3>& in2() const { return in2_; } |
| Eigen::Tensor<float, 3>& out() { return out_; } |
| const Eigen::Tensor<float, 1>& kernel1d() const { return kernel_1d_; } |
| const Eigen::Tensor<float, 2>& kernel2d() const { return kernel_2d_; } |
| const Eigen::Tensor<float, 3>& kernel3d() const { return kernel_3d_; } |
| |
| private: |
| const Eigen::Tensor<float, 3>& in1_; |
| const Eigen::Tensor<float, 3>& in2_; |
| Eigen::Tensor<float, 3>& out_; |
| |
| Eigen::Tensor<float, 1> kernel_1d_; |
| Eigen::Tensor<float, 2> kernel_2d_; |
| Eigen::Tensor<float, 3> kernel_3d_; |
| |
| Eigen::DefaultDevice cpu_device_; |
| }; |
| |
| // Context for evaluation on GPU |
| struct GPUContext { |
| GPUContext(const Eigen::TensorMap<Eigen::Tensor<float, 3>>& in1, Eigen::TensorMap<Eigen::Tensor<float, 3>>& in2, |
| Eigen::TensorMap<Eigen::Tensor<float, 3>>& out) |
| : in1_(in1), in2_(in2), out_(out), gpu_device_(&stream_) { |
| assert(gpuMalloc((void**)(&kernel_1d_), 2 * sizeof(float)) == gpuSuccess); |
| float kernel_1d_val[] = {3.14f, 2.7f}; |
| assert(gpuMemcpy(kernel_1d_, kernel_1d_val, 2 * sizeof(float), gpuMemcpyHostToDevice) == gpuSuccess); |
| |
| assert(gpuMalloc((void**)(&kernel_2d_), 4 * sizeof(float)) == gpuSuccess); |
| float kernel_2d_val[] = {3.14f, 2.7f, 0.2f, 7.0f}; |
| assert(gpuMemcpy(kernel_2d_, kernel_2d_val, 4 * sizeof(float), gpuMemcpyHostToDevice) == gpuSuccess); |
| |
| assert(gpuMalloc((void**)(&kernel_3d_), 8 * sizeof(float)) == gpuSuccess); |
| float kernel_3d_val[] = {3.14f, -1.0f, 2.7f, -0.3f, 0.2f, -0.7f, 7.0f, -0.5f}; |
| assert(gpuMemcpy(kernel_3d_, kernel_3d_val, 8 * sizeof(float), gpuMemcpyHostToDevice) == gpuSuccess); |
| } |
| ~GPUContext() { |
| assert(gpuFree(kernel_1d_) == gpuSuccess); |
| assert(gpuFree(kernel_2d_) == gpuSuccess); |
| assert(gpuFree(kernel_3d_) == gpuSuccess); |
| } |
| |
| const Eigen::GpuDevice& device() const { return gpu_device_; } |
| |
| const Eigen::TensorMap<Eigen::Tensor<float, 3>>& in1() const { return in1_; } |
| const Eigen::TensorMap<Eigen::Tensor<float, 3>>& in2() const { return in2_; } |
| Eigen::TensorMap<Eigen::Tensor<float, 3>>& out() { return out_; } |
| Eigen::TensorMap<Eigen::Tensor<float, 1>> kernel1d() const { |
| return Eigen::TensorMap<Eigen::Tensor<float, 1>>(kernel_1d_, 2); |
| } |
| Eigen::TensorMap<Eigen::Tensor<float, 2>> kernel2d() const { |
| return Eigen::TensorMap<Eigen::Tensor<float, 2>>(kernel_2d_, 2, 2); |
| } |
| Eigen::TensorMap<Eigen::Tensor<float, 3>> kernel3d() const { |
| return Eigen::TensorMap<Eigen::Tensor<float, 3>>(kernel_3d_, 2, 2, 2); |
| } |
| |
| private: |
| const Eigen::TensorMap<Eigen::Tensor<float, 3>>& in1_; |
| const Eigen::TensorMap<Eigen::Tensor<float, 3>>& in2_; |
| Eigen::TensorMap<Eigen::Tensor<float, 3>>& out_; |
| |
| float* kernel_1d_; |
| float* kernel_2d_; |
| float* kernel_3d_; |
| |
| Eigen::GpuStreamDevice stream_; |
| Eigen::GpuDevice gpu_device_; |
| }; |
| |
| // The actual expression to evaluate |
| template <typename Context> |
| void test_contextual_eval(Context* context) { |
| context->out().device(context->device()) = context->in1() + context->in2() * 3.14f + context->in1().constant(2.718f); |
| } |
| |
| template <typename Context> |
| void test_forced_contextual_eval(Context* context) { |
| context->out().device(context->device()) = |
| (context->in1() + context->in2()).eval() * 3.14f + context->in1().constant(2.718f); |
| } |
| |
| template <typename Context> |
| void test_compound_assignment(Context* context) { |
| context->out().device(context->device()) = context->in1().constant(2.718f); |
| context->out().device(context->device()) += context->in1() + context->in2() * 3.14f; |
| } |
| |
| template <typename Context> |
| void test_contraction(Context* context) { |
| Eigen::array<std::pair<int, int>, 2> dims; |
| dims[0] = std::make_pair(1, 1); |
| dims[1] = std::make_pair(2, 2); |
| |
| Eigen::array<int, 2> shape{40, 50 * 70}; |
| |
| Eigen::DSizes<int, 2> indices(0, 0); |
| Eigen::DSizes<int, 2> sizes(40, 40); |
| |
| context->out().reshape(shape).slice(indices, sizes).device(context->device()) = |
| context->in1().contract(context->in2(), dims); |
| } |
| |
| template <typename Context> |
| void test_1d_convolution(Context* context) { |
| Eigen::DSizes<int, 3> indices(0, 0, 0); |
| Eigen::DSizes<int, 3> sizes(40, 49, 70); |
| |
| Eigen::array<int, 1> dims{1}; |
| context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel1d(), dims); |
| } |
| |
| template <typename Context> |
| void test_2d_convolution(Context* context) { |
| Eigen::DSizes<int, 3> indices(0, 0, 0); |
| Eigen::DSizes<int, 3> sizes(40, 49, 69); |
| |
| Eigen::array<int, 2> dims{1, 2}; |
| context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel2d(), dims); |
| } |
| |
| template <typename Context> |
| void test_3d_convolution(Context* context) { |
| Eigen::DSizes<int, 3> indices(0, 0, 0); |
| Eigen::DSizes<int, 3> sizes(39, 49, 69); |
| |
| Eigen::array<int, 3> dims{0, 1, 2}; |
| context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel3d(), dims); |
| } |
| |
| // Helper method to synchronize device. |
| template <typename Device> |
| void synchronize(Device& device) { /*nothing*/ |
| } |
| template <> |
| void synchronize(Eigen::GpuDevice& device) { |
| device.synchronize(); |
| } |
| |
| template <typename DataType, typename TensorDevice> |
| void test_device_memory(const TensorDevice& device) { |
| int count = 100; |
| Eigen::array<int, 1> tensorRange{count}; |
| Eigen::Tensor<DataType, 1> host(tensorRange); |
| Eigen::Tensor<DataType, 1> expected(tensorRange); |
| DataType* device_data = static_cast<DataType*>(device.allocate(count * sizeof(DataType))); |
| |
| // memset |
| const char byte_value = static_cast<char>(0xAB); |
| device.memset(device_data, byte_value, count * sizeof(DataType)); |
| device.memcpyDeviceToHost(host.data(), device_data, count * sizeof(DataType)); |
| synchronize(device); |
| memset(expected.data(), byte_value, count * sizeof(DataType)); |
| for (size_t i = 0; i < count; i++) { |
| VERIFY_IS_EQUAL(host(i), expected(i)); |
| } |
| |
| // fill |
| DataType fill_value = DataType(7); |
| std::fill_n(expected.data(), count, fill_value); |
| device.fill(device_data, device_data + count, fill_value); |
| device.memcpyDeviceToHost(host.data(), device_data, count * sizeof(DataType)); |
| synchronize(device); |
| for (int i = 0; i < count; i++) { |
| VERIFY_IS_EQUAL(host(i), expected(i)); |
| } |
| |
| device.deallocate(device_data); |
| } |
| |
| void test_cpu() { |
| Eigen::Tensor<float, 3> in1(40, 50, 70); |
| Eigen::Tensor<float, 3> in2(40, 50, 70); |
| Eigen::Tensor<float, 3> out(40, 50, 70); |
| |
| in1 = in1.random() + in1.constant(10.0f); |
| in2 = in2.random() + in2.constant(10.0f); |
| |
| CPUContext context(in1, in2, out); |
| test_contextual_eval(&context); |
| for (int i = 0; i < 40; ++i) { |
| for (int j = 0; j < 50; ++j) { |
| for (int k = 0; k < 70; ++k) { |
| VERIFY_IS_APPROX(out(i, j, k), in1(i, j, k) + in2(i, j, k) * 3.14f + 2.718f); |
| } |
| } |
| } |
| |
| test_forced_contextual_eval(&context); |
| for (int i = 0; i < 40; ++i) { |
| for (int j = 0; j < 50; ++j) { |
| for (int k = 0; k < 70; ++k) { |
| VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) + in2(i, j, k)) * 3.14f + 2.718f); |
| } |
| } |
| } |
| |
| test_compound_assignment(&context); |
| for (int i = 0; i < 40; ++i) { |
| for (int j = 0; j < 50; ++j) { |
| for (int k = 0; k < 70; ++k) { |
| VERIFY_IS_APPROX(out(i, j, k), in1(i, j, k) + in2(i, j, k) * 3.14f + 2.718f); |
| } |
| } |
| } |
| |
| test_contraction(&context); |
| for (int i = 0; i < 40; ++i) { |
| for (int j = 0; j < 40; ++j) { |
| const float result = out(i, j, 0); |
| float expected = 0; |
| for (int k = 0; k < 50; ++k) { |
| for (int l = 0; l < 70; ++l) { |
| expected += in1(i, k, l) * in2(j, k, l); |
| } |
| } |
| VERIFY_IS_APPROX(expected, result); |
| } |
| } |
| |
| test_1d_convolution(&context); |
| for (int i = 0; i < 40; ++i) { |
| for (int j = 0; j < 49; ++j) { |
| for (int k = 0; k < 70; ++k) { |
| VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) * 3.14f + in1(i, j + 1, k) * 2.7f)); |
| } |
| } |
| } |
| |
| test_2d_convolution(&context); |
| for (int i = 0; i < 40; ++i) { |
| for (int j = 0; j < 49; ++j) { |
| for (int k = 0; k < 69; ++k) { |
| const float result = out(i, j, k); |
| const float expected = |
| (in1(i, j, k) * 3.14f + in1(i, j + 1, k) * 2.7f) + (in1(i, j, k + 1) * 0.2f + in1(i, j + 1, k + 1) * 7.0f); |
| if (fabs(expected) < 1e-4f && fabs(result) < 1e-4f) { |
| continue; |
| } |
| VERIFY_IS_APPROX(expected, result); |
| } |
| } |
| } |
| |
| test_3d_convolution(&context); |
| for (int i = 0; i < 39; ++i) { |
| for (int j = 0; j < 49; ++j) { |
| for (int k = 0; k < 69; ++k) { |
| const float result = out(i, j, k); |
| const float expected = |
| (in1(i, j, k) * 3.14f + in1(i, j + 1, k) * 2.7f + in1(i, j, k + 1) * 0.2f + in1(i, j + 1, k + 1) * 7.0f) + |
| (in1(i + 1, j, k) * -1.0f + in1(i + 1, j + 1, k) * -0.3f + in1(i + 1, j, k + 1) * -0.7f + |
| in1(i + 1, j + 1, k + 1) * -0.5f); |
| if (fabs(expected) < 1e-4f && fabs(result) < 1e-4f) { |
| continue; |
| } |
| VERIFY_IS_APPROX(expected, result); |
| } |
| } |
| } |
| |
| test_device_memory<float>(context.device()); |
| test_device_memory<OffByOneScalar<int>>(context.device()); |
| } |
| |
| void test_gpu() { |
| Eigen::Tensor<float, 3> in1(40, 50, 70); |
| Eigen::Tensor<float, 3> in2(40, 50, 70); |
| Eigen::Tensor<float, 3> out(40, 50, 70); |
| in1 = in1.random() + in1.constant(10.0f); |
| in2 = in2.random() + in2.constant(10.0f); |
| |
| std::size_t in1_bytes = in1.size() * sizeof(float); |
| std::size_t in2_bytes = in2.size() * sizeof(float); |
| std::size_t out_bytes = out.size() * sizeof(float); |
| |
| float* d_in1; |
| float* d_in2; |
| float* d_out; |
| gpuMalloc((void**)(&d_in1), in1_bytes); |
| gpuMalloc((void**)(&d_in2), in2_bytes); |
| gpuMalloc((void**)(&d_out), out_bytes); |
| |
| gpuMemcpy(d_in1, in1.data(), in1_bytes, gpuMemcpyHostToDevice); |
| gpuMemcpy(d_in2, in2.data(), in2_bytes, gpuMemcpyHostToDevice); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 3>> gpu_in1(d_in1, 40, 50, 70); |
| Eigen::TensorMap<Eigen::Tensor<float, 3>> gpu_in2(d_in2, 40, 50, 70); |
| Eigen::TensorMap<Eigen::Tensor<float, 3>> gpu_out(d_out, 40, 50, 70); |
| |
| GPUContext context(gpu_in1, gpu_in2, gpu_out); |
| test_contextual_eval(&context); |
| assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess); |
| for (int i = 0; i < 40; ++i) { |
| for (int j = 0; j < 50; ++j) { |
| for (int k = 0; k < 70; ++k) { |
| VERIFY_IS_APPROX(out(i, j, k), in1(i, j, k) + in2(i, j, k) * 3.14f + 2.718f); |
| } |
| } |
| } |
| |
| test_forced_contextual_eval(&context); |
| assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess); |
| for (int i = 0; i < 40; ++i) { |
| for (int j = 0; j < 50; ++j) { |
| for (int k = 0; k < 70; ++k) { |
| VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) + in2(i, j, k)) * 3.14f + 2.718f); |
| } |
| } |
| } |
| |
| test_compound_assignment(&context); |
| assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess); |
| for (int i = 0; i < 40; ++i) { |
| for (int j = 0; j < 50; ++j) { |
| for (int k = 0; k < 70; ++k) { |
| VERIFY_IS_APPROX(out(i, j, k), in1(i, j, k) + in2(i, j, k) * 3.14f + 2.718f); |
| } |
| } |
| } |
| |
| test_contraction(&context); |
| assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess); |
| for (int i = 0; i < 40; ++i) { |
| for (int j = 0; j < 40; ++j) { |
| const float result = out(i, j, 0); |
| float expected = 0; |
| for (int k = 0; k < 50; ++k) { |
| for (int l = 0; l < 70; ++l) { |
| expected += in1(i, k, l) * in2(j, k, l); |
| } |
| } |
| VERIFY_IS_APPROX(expected, result); |
| } |
| } |
| |
| test_1d_convolution(&context); |
| assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, context.device().stream()) == gpuSuccess); |
| assert(gpuStreamSynchronize(context.device().stream()) == gpuSuccess); |
| for (int i = 0; i < 40; ++i) { |
| for (int j = 0; j < 49; ++j) { |
| for (int k = 0; k < 70; ++k) { |
| VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) * 3.14f + in1(i, j + 1, k) * 2.7f)); |
| } |
| } |
| } |
| |
| test_2d_convolution(&context); |
| assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, context.device().stream()) == gpuSuccess); |
| assert(gpuStreamSynchronize(context.device().stream()) == gpuSuccess); |
| for (int i = 0; i < 40; ++i) { |
| for (int j = 0; j < 49; ++j) { |
| for (int k = 0; k < 69; ++k) { |
| const float result = out(i, j, k); |
| const float expected = |
| (in1(i, j, k) * 3.14f + in1(i, j + 1, k) * 2.7f + in1(i, j, k + 1) * 0.2f + in1(i, j + 1, k + 1) * 7.0f); |
| VERIFY_IS_APPROX(expected, result); |
| } |
| } |
| } |
| |
| #if !defined(EIGEN_USE_HIP) |
| // disable this test on the HIP platform |
| // 3D tensor convolutions seem to hang on the HIP platform |
| |
| test_3d_convolution(&context); |
| assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, context.device().stream()) == gpuSuccess); |
| assert(gpuStreamSynchronize(context.device().stream()) == gpuSuccess); |
| for (int i = 0; i < 39; ++i) { |
| for (int j = 0; j < 49; ++j) { |
| for (int k = 0; k < 69; ++k) { |
| const float result = out(i, j, k); |
| const float expected = (in1(i, j, k) * 3.14f + in1(i, j + 1, k) * 2.7f + in1(i, j, k + 1) * 0.2f + |
| in1(i, j + 1, k + 1) * 7.0f + in1(i + 1, j, k) * -1.0f + in1(i + 1, j + 1, k) * -0.3f + |
| in1(i + 1, j, k + 1) * -0.7f + in1(i + 1, j + 1, k + 1) * -0.5f); |
| VERIFY_IS_APPROX(expected, result); |
| } |
| } |
| } |
| |
| #endif |
| |
| test_device_memory<float>(context.device()); |
| test_device_memory<OffByOneScalar<int>>(context.device()); |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_device) { |
| CALL_SUBTEST_1(test_cpu()); |
| CALL_SUBTEST_2(test_gpu()); |
| } |