| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/MatrixFunctions> |
| |
| // Variant of VERIFY_IS_APPROX which uses absolute error instead of |
| // relative error. |
| #define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b)) |
| |
| template <typename Type1, typename Type2> |
| inline bool test_isApprox_abs(const Type1& a, const Type2& b) { |
| return ((a - b).array().abs() < test_precision<typename Type1::RealScalar>()).all(); |
| } |
| |
| // Returns a matrix with eigenvalues clustered around 0, 1 and 2. |
| template <typename MatrixType> |
| MatrixType randomMatrixWithRealEivals(const Index size) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| MatrixType diag = MatrixType::Zero(size, size); |
| for (Index i = 0; i < size; ++i) { |
| diag(i, i) = |
| Scalar(RealScalar(internal::random<int>(0, 2))) + internal::random<Scalar>() * Scalar(RealScalar(0.01)); |
| } |
| MatrixType A = MatrixType::Random(size, size); |
| HouseholderQR<MatrixType> QRofA(A); |
| return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); |
| } |
| |
| template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> |
| struct randomMatrixWithImagEivals { |
| // Returns a matrix with eigenvalues clustered around 0 and +/- i. |
| static MatrixType run(const Index size); |
| }; |
| |
| // Partial specialization for real matrices |
| template <typename MatrixType> |
| struct randomMatrixWithImagEivals<MatrixType, 0> { |
| static MatrixType run(const Index size) { |
| typedef typename MatrixType::Scalar Scalar; |
| MatrixType diag = MatrixType::Zero(size, size); |
| Index i = 0; |
| while (i < size) { |
| Index randomInt = internal::random<Index>(-1, 1); |
| if (randomInt == 0 || i == size - 1) { |
| diag(i, i) = internal::random<Scalar>() * Scalar(0.01); |
| ++i; |
| } else { |
| Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01); |
| diag(i, i + 1) = alpha; |
| diag(i + 1, i) = -alpha; |
| i += 2; |
| } |
| } |
| MatrixType A = MatrixType::Random(size, size); |
| HouseholderQR<MatrixType> QRofA(A); |
| return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); |
| } |
| }; |
| |
| // Partial specialization for complex matrices |
| template <typename MatrixType> |
| struct randomMatrixWithImagEivals<MatrixType, 1> { |
| static MatrixType run(const Index size) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| const Scalar imagUnit(0, 1); |
| MatrixType diag = MatrixType::Zero(size, size); |
| for (Index i = 0; i < size; ++i) { |
| diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit + |
| internal::random<Scalar>() * Scalar(RealScalar(0.01)); |
| } |
| MatrixType A = MatrixType::Random(size, size); |
| HouseholderQR<MatrixType> QRofA(A); |
| return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); |
| } |
| }; |
| |
| template <typename MatrixType> |
| void testMatrixExponential(const MatrixType& A) { |
| typedef typename internal::traits<MatrixType>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef std::complex<RealScalar> ComplexScalar; |
| |
| VERIFY_IS_APPROX(A.exp(), A.matrixFunction(internal::stem_function_exp<ComplexScalar>)); |
| } |
| |
| template <typename MatrixType> |
| void testMatrixLogarithm(const MatrixType& A) { |
| typedef typename internal::traits<MatrixType>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| MatrixType scaledA; |
| RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff(); |
| if (maxImagPartOfSpectrum >= RealScalar(0.9L * EIGEN_PI)) |
| scaledA = A * RealScalar(0.9L * EIGEN_PI) / maxImagPartOfSpectrum; |
| else |
| scaledA = A; |
| |
| // identity X.exp().log() = X only holds if Im(lambda) < pi for all eigenvalues of X |
| MatrixType expA = scaledA.exp(); |
| MatrixType logExpA = expA.log(); |
| VERIFY_IS_APPROX(logExpA, scaledA); |
| } |
| |
| template <typename MatrixType> |
| void testHyperbolicFunctions(const MatrixType& A) { |
| // Need to use absolute error because of possible cancellation when |
| // adding/subtracting expA and expmA. |
| VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2); |
| VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2); |
| } |
| |
| template <typename MatrixType> |
| void testGonioFunctions(const MatrixType& A) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef std::complex<RealScalar> ComplexScalar; |
| typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, MatrixType::Options> |
| ComplexMatrix; |
| |
| ComplexScalar imagUnit(0, 1); |
| ComplexScalar two(2, 0); |
| |
| ComplexMatrix Ac = A.template cast<ComplexScalar>(); |
| |
| ComplexMatrix exp_iA = (imagUnit * Ac).exp(); |
| ComplexMatrix exp_miA = (-imagUnit * Ac).exp(); |
| |
| ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>(); |
| VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two * imagUnit)); |
| |
| ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>(); |
| VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2); |
| } |
| |
| template <typename MatrixType> |
| void testMatrix(const MatrixType& A) { |
| testMatrixExponential(A); |
| testMatrixLogarithm(A); |
| testHyperbolicFunctions(A); |
| testGonioFunctions(A); |
| } |
| |
| template <typename MatrixType> |
| void testMatrixType(const MatrixType& m) { |
| // Matrices with clustered eigenvalue lead to different code paths |
| // in MatrixFunction.h and are thus useful for testing. |
| |
| const Index size = m.rows(); |
| for (int i = 0; i < g_repeat; i++) { |
| testMatrix(MatrixType::Random(size, size).eval()); |
| testMatrix(randomMatrixWithRealEivals<MatrixType>(size)); |
| testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size)); |
| } |
| } |
| |
| template <typename MatrixType> |
| void testMapRef(const MatrixType& A) { |
| // Test if passing Ref and Map objects is possible |
| // (Regression test for Bug #1796) |
| Index size = A.rows(); |
| MatrixType X; |
| X.setRandom(size, size); |
| MatrixType Y(size, size); |
| Ref<MatrixType> R(Y); |
| Ref<const MatrixType> Rc(X); |
| Map<MatrixType> M(Y.data(), size, size); |
| Map<const MatrixType> Mc(X.data(), size, size); |
| |
| X = X * X; // make sure sqrt is possible |
| Y = X.sqrt(); |
| R = Rc.sqrt(); |
| M = Mc.sqrt(); |
| Y = X.exp(); |
| R = Rc.exp(); |
| M = Mc.exp(); |
| X = Y; // make sure log is possible |
| Y = X.log(); |
| R = Rc.log(); |
| M = Mc.log(); |
| |
| Y = X.cos() + Rc.cos() + Mc.cos(); |
| Y = X.sin() + Rc.sin() + Mc.sin(); |
| |
| Y = X.cosh() + Rc.cosh() + Mc.cosh(); |
| Y = X.sinh() + Rc.sinh() + Mc.sinh(); |
| } |
| |
| EIGEN_DECLARE_TEST(matrix_function) { |
| CALL_SUBTEST_1(testMatrixType(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_2(testMatrixType(Matrix3cf())); |
| CALL_SUBTEST_3(testMatrixType(MatrixXf(8, 8))); |
| CALL_SUBTEST_4(testMatrixType(Matrix2d())); |
| CALL_SUBTEST_5(testMatrixType(Matrix<double, 5, 5, RowMajor>())); |
| CALL_SUBTEST_6(testMatrixType(Matrix4cd())); |
| CALL_SUBTEST_7(testMatrixType(MatrixXd(13, 13))); |
| |
| CALL_SUBTEST_1(testMapRef(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_2(testMapRef(Matrix3cf())); |
| CALL_SUBTEST_3(testMapRef(MatrixXf(8, 8))); |
| CALL_SUBTEST_7(testMapRef(MatrixXd(13, 13))); |
| } |