bug #1193: fix lpNorm<Infinity> for empty input.
diff --git a/Eigen/src/Core/Dot.h b/Eigen/src/Core/Dot.h
index 82d58fc..f3c8696 100644
--- a/Eigen/src/Core/Dot.h
+++ b/Eigen/src/Core/Dot.h
@@ -227,9 +227,12 @@
template<typename Derived>
struct lpNorm_selector<Derived, Infinity>
{
+ typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
- static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
+ static inline RealScalar run(const MatrixBase<Derived>& m)
{
+ if(Derived::SizeAtCompileTime==0 || (Derived::SizeAtCompileTime==Dynamic && m.size()==0))
+ return RealScalar(0);
return m.cwiseAbs().maxCoeff();
}
};
@@ -240,6 +243,8 @@
* of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
* norm, that is the maximum of the absolute values of the coefficients of \c *this.
*
+ * In all cases, if \c *this is empty, then the value 0 is returned.
+ *
* \note For matrices, this function does not compute the <a href="https://en.wikipedia.org/wiki/Operator_norm">operator-norm</a>. That is, if \c *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink.
*
* \sa norm()
diff --git a/Eigen/src/Core/Redux.h b/Eigen/src/Core/Redux.h
index 3a47edf..7984cd6 100644
--- a/Eigen/src/Core/Redux.h
+++ b/Eigen/src/Core/Redux.h
@@ -438,7 +438,9 @@
return derived().redux(Eigen::internal::scalar_max_op<Scalar>());
}
-/** \returns the sum of all coefficients of *this
+/** \returns the sum of all coefficients of \c *this
+ *
+ * If \c *this is empty, then the value 0 is returned.
*
* \sa trace(), prod(), mean()
*/
diff --git a/test/array_for_matrix.cpp b/test/array_for_matrix.cpp
index db5f3b3..75e6a77 100644
--- a/test/array_for_matrix.cpp
+++ b/test/array_for_matrix.cpp
@@ -144,9 +144,21 @@
template<typename VectorType> void lpNorm(const VectorType& v)
{
using std::sqrt;
+ typedef typename VectorType::RealScalar RealScalar;
VectorType u = VectorType::Random(v.size());
- VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
+ if(v.size()==0)
+ {
+ VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), RealScalar(0));
+ VERIFY_IS_APPROX(u.template lpNorm<1>(), RealScalar(0));
+ VERIFY_IS_APPROX(u.template lpNorm<2>(), RealScalar(0));
+ VERIFY_IS_APPROX(u.template lpNorm<5>(), RealScalar(0));
+ }
+ else
+ {
+ VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
+ }
+
VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum());
VERIFY_IS_APPROX(u.template lpNorm<2>(), sqrt(u.array().abs().square().sum()));
VERIFY_IS_APPROX(numext::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum());
@@ -255,6 +267,8 @@
CALL_SUBTEST_5( lpNorm(VectorXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_4( lpNorm(VectorXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
}
+ CALL_SUBTEST_5( lpNorm(VectorXf(0)) );
+ CALL_SUBTEST_4( lpNorm(VectorXcf(0)) );
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_4( resize(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_5( resize(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );