| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/QR> |
| |
| template <typename Derived1, typename Derived2> |
| bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, |
| typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision()) { |
| return !((m1 - m2).cwiseAbs2().maxCoeff() < |
| epsilon * epsilon * (std::max)(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff())); |
| } |
| |
| // Allow specifying tolerance for verifying error. |
| template <typename Type1, typename Type2, typename Tol> |
| inline bool verifyIsApprox(const Type1& a, const Type2& b, Tol tol) { |
| bool ret = a.isApprox(b, tol); |
| if (!ret) { |
| std::cerr << "Difference too large wrt tolerance " << tol << ", relative error is: " << test_relative_error(a, b) |
| << std::endl; |
| } |
| return ret; |
| } |
| |
| template <typename LhsType, typename RhsType> |
| std::enable_if_t<RhsType::SizeAtCompileTime == Dynamic, void> check_mismatched_product(LhsType& lhs, |
| const RhsType& rhs) { |
| VERIFY_RAISES_ASSERT(lhs = rhs * rhs); |
| } |
| |
| template <typename LhsType, typename RhsType> |
| std::enable_if_t<RhsType::SizeAtCompileTime != Dynamic, void> check_mismatched_product(LhsType& /*unused*/, |
| const RhsType& /*unused*/) {} |
| |
| template <typename MatrixType> |
| void product(const MatrixType& m) { |
| /* this test covers the following files: |
| Identity.h Product.h |
| */ |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, |
| MatrixType::Flags & RowMajorBit ? ColMajor : RowMajor> |
| OtherMajorMatrixType; |
| |
| // We want a tighter epsilon for not-approx tests. Otherwise, for certain |
| // low-precision types (e.g. bfloat16), the bound ends up being relatively large |
| // (e.g. 0.12), causing flaky tests. |
| RealScalar not_approx_epsilon = RealScalar(0.1) * NumTraits<RealScalar>::dummy_precision(); |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| // this test relies a lot on Random.h, and there's not much more that we can do |
| // to test it, hence I consider that we will have tested Random.h |
| MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); |
| RowSquareMatrixType identity = RowSquareMatrixType::Identity(rows, rows), |
| square = RowSquareMatrixType::Random(rows, rows), res = RowSquareMatrixType::Random(rows, rows); |
| ColSquareMatrixType square2 = ColSquareMatrixType::Random(cols, cols), res2 = ColSquareMatrixType::Random(cols, cols); |
| RowVectorType v1 = RowVectorType::Random(rows); |
| ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); |
| |
| // Prevent overflows for integer types. |
| if (Eigen::NumTraits<Scalar>::IsInteger) { |
| Scalar kMaxVal = Scalar(10000); |
| m1.array() = m1.array() - kMaxVal * (m1.array() / kMaxVal); |
| m2.array() = m2.array() - kMaxVal * (m2.array() / kMaxVal); |
| v1.array() = v1.array() - kMaxVal * (v1.array() / kMaxVal); |
| } |
| |
| OtherMajorMatrixType tm1 = m1; |
| |
| Scalar s1 = internal::random<Scalar>(); |
| |
| Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1), |
| c2 = internal::random<Index>(0, cols - 1); |
| |
| // begin testing Product.h: only associativity for now |
| // (we use Transpose.h but this doesn't count as a test for it) |
| { |
| // Increase tolerance, since coefficients here can get relatively large. |
| RealScalar tol = RealScalar(2) * get_test_precision(m1); |
| VERIFY(verifyIsApprox((m1 * m1.transpose()) * m2, m1 * (m1.transpose() * m2), tol)); |
| } |
| m3 = m1; |
| m3 *= m1.transpose() * m2; |
| VERIFY_IS_APPROX(m3, m1 * (m1.transpose() * m2)); |
| VERIFY_IS_APPROX(m3, m1 * (m1.transpose() * m2)); |
| |
| // continue testing Product.h: distributivity |
| VERIFY_IS_APPROX(square * (m1 + m2), square * m1 + square * m2); |
| VERIFY_IS_APPROX(square * (m1 - m2), square * m1 - square * m2); |
| |
| // continue testing Product.h: compatibility with ScalarMultiple.h |
| VERIFY_IS_APPROX(s1 * (square * m1), (s1 * square) * m1); |
| VERIFY_IS_APPROX(s1 * (square * m1), square * (m1 * s1)); |
| |
| // test Product.h together with Identity.h |
| VERIFY_IS_APPROX(v1, identity * v1); |
| VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity); |
| // again, test operator() to check const-qualification |
| VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r, c), static_cast<Scalar>(r == c)); |
| |
| if (rows != cols) { |
| check_mismatched_product(m3, m1); |
| } |
| |
| // test the previous tests were not screwed up because operator* returns 0 |
| // (we use the more accurate default epsilon) |
| if (!NumTraits<Scalar>::IsInteger && (std::min)(rows, cols) > 1) { |
| VERIFY(areNotApprox(m1.transpose() * m2, m2.transpose() * m1, not_approx_epsilon)); |
| } |
| |
| // test optimized operator+= path |
| res = square; |
| res.noalias() += m1 * m2.transpose(); |
| VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); |
| if (!NumTraits<Scalar>::IsInteger && (std::min)(rows, cols) > 1) { |
| VERIFY(areNotApprox(res, square + m2 * m1.transpose(), not_approx_epsilon)); |
| } |
| vcres = vc2; |
| vcres.noalias() += m1.transpose() * v1; |
| VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1); |
| |
| // test optimized operator-= path |
| res = square; |
| res.noalias() -= m1 * m2.transpose(); |
| VERIFY_IS_APPROX(res, square - (m1 * m2.transpose())); |
| if (!NumTraits<Scalar>::IsInteger && (std::min)(rows, cols) > 1) { |
| VERIFY(areNotApprox(res, square - m2 * m1.transpose(), not_approx_epsilon)); |
| } |
| vcres = vc2; |
| vcres.noalias() -= m1.transpose() * v1; |
| VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1); |
| |
| // test scaled products |
| res = square; |
| res.noalias() = s1 * m1 * m2.transpose(); |
| VERIFY_IS_APPROX(res, ((s1 * m1).eval() * m2.transpose())); |
| res = square; |
| res.noalias() += s1 * m1 * m2.transpose(); |
| VERIFY_IS_APPROX(res, square + ((s1 * m1).eval() * m2.transpose())); |
| res = square; |
| res.noalias() -= s1 * m1 * m2.transpose(); |
| VERIFY_IS_APPROX(res, square - ((s1 * m1).eval() * m2.transpose())); |
| |
| // test d ?= a+b*c rules |
| res.noalias() = square + m1 * m2.transpose(); |
| VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); |
| res.noalias() += square + m1 * m2.transpose(); |
| VERIFY_IS_APPROX(res, Scalar(2) * (square + m1 * m2.transpose())); |
| res.noalias() -= square + m1 * m2.transpose(); |
| VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); |
| |
| // test d ?= a-b*c rules |
| res.noalias() = square - m1 * m2.transpose(); |
| VERIFY_IS_APPROX(res, square - m1 * m2.transpose()); |
| res.noalias() += square - m1 * m2.transpose(); |
| VERIFY_IS_APPROX(res, Scalar(2) * (square - m1 * m2.transpose())); |
| res.noalias() -= square - m1 * m2.transpose(); |
| VERIFY_IS_APPROX(res, square - m1 * m2.transpose()); |
| |
| tm1 = m1; |
| VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1); |
| VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1); |
| |
| // test submatrix and matrix/vector product |
| for (int i = 0; i < rows; ++i) res.row(i) = m1.row(i) * m2.transpose(); |
| VERIFY_IS_APPROX(res, m1 * m2.transpose()); |
| // the other way round: |
| for (int i = 0; i < rows; ++i) res.col(i) = m1 * m2.transpose().col(i); |
| VERIFY_IS_APPROX(res, m1 * m2.transpose()); |
| |
| res2 = square2; |
| res2.noalias() += m1.transpose() * m2; |
| VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2); |
| if (!NumTraits<Scalar>::IsInteger && (std::min)(rows, cols) > 1) { |
| VERIFY(areNotApprox(res2, square2 + m2.transpose() * m1, not_approx_epsilon)); |
| } |
| |
| VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval()); |
| VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval()); |
| |
| // vector at runtime (see bug 1166) |
| { |
| RowSquareMatrixType ref(square); |
| ColSquareMatrixType ref2(square2); |
| ref = res = square; |
| VERIFY_IS_APPROX(res.block(0, 0, 1, rows).noalias() = m1.col(0).transpose() * square.transpose(), |
| (ref.row(0) = m1.col(0).transpose() * square.transpose())); |
| VERIFY_IS_APPROX(res.block(0, 0, 1, rows).noalias() = m1.block(0, 0, rows, 1).transpose() * square.transpose(), |
| (ref.row(0) = m1.col(0).transpose() * square.transpose())); |
| VERIFY_IS_APPROX(res.block(0, 0, 1, rows).noalias() = m1.col(0).transpose() * square, |
| (ref.row(0) = m1.col(0).transpose() * square)); |
| VERIFY_IS_APPROX(res.block(0, 0, 1, rows).noalias() = m1.block(0, 0, rows, 1).transpose() * square, |
| (ref.row(0) = m1.col(0).transpose() * square)); |
| ref2 = res2 = square2; |
| VERIFY_IS_APPROX(res2.block(0, 0, 1, cols).noalias() = m1.row(0) * square2.transpose(), |
| (ref2.row(0) = m1.row(0) * square2.transpose())); |
| VERIFY_IS_APPROX(res2.block(0, 0, 1, cols).noalias() = m1.block(0, 0, 1, cols) * square2.transpose(), |
| (ref2.row(0) = m1.row(0) * square2.transpose())); |
| VERIFY_IS_APPROX(res2.block(0, 0, 1, cols).noalias() = m1.row(0) * square2, (ref2.row(0) = m1.row(0) * square2)); |
| VERIFY_IS_APPROX(res2.block(0, 0, 1, cols).noalias() = m1.block(0, 0, 1, cols) * square2, |
| (ref2.row(0) = m1.row(0) * square2)); |
| } |
| |
| // vector.block() (see bug 1283) |
| { |
| RowVectorType w1(rows); |
| VERIFY_IS_APPROX(square * v1.block(0, 0, rows, 1), square * v1); |
| VERIFY_IS_APPROX(w1.noalias() = square * v1.block(0, 0, rows, 1), square * v1); |
| VERIFY_IS_APPROX(w1.block(0, 0, rows, 1).noalias() = square * v1.block(0, 0, rows, 1), square * v1); |
| |
| Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> w2(cols); |
| VERIFY_IS_APPROX(vc2.block(0, 0, cols, 1).transpose() * square2, vc2.transpose() * square2); |
| VERIFY_IS_APPROX(w2.noalias() = vc2.block(0, 0, cols, 1).transpose() * square2, vc2.transpose() * square2); |
| VERIFY_IS_APPROX(w2.block(0, 0, 1, cols).noalias() = vc2.block(0, 0, cols, 1).transpose() * square2, |
| vc2.transpose() * square2); |
| |
| vc2 = square2.block(0, 0, 1, cols).transpose(); |
| VERIFY_IS_APPROX(square2.block(0, 0, 1, cols) * square2, vc2.transpose() * square2); |
| VERIFY_IS_APPROX(w2.noalias() = square2.block(0, 0, 1, cols) * square2, vc2.transpose() * square2); |
| VERIFY_IS_APPROX(w2.block(0, 0, 1, cols).noalias() = square2.block(0, 0, 1, cols) * square2, |
| vc2.transpose() * square2); |
| |
| vc2 = square2.block(0, 0, cols, 1); |
| VERIFY_IS_APPROX(square2.block(0, 0, cols, 1).transpose() * square2, vc2.transpose() * square2); |
| VERIFY_IS_APPROX(w2.noalias() = square2.block(0, 0, cols, 1).transpose() * square2, vc2.transpose() * square2); |
| VERIFY_IS_APPROX(w2.block(0, 0, 1, cols).noalias() = square2.block(0, 0, cols, 1).transpose() * square2, |
| vc2.transpose() * square2); |
| } |
| |
| // inner product |
| { |
| Scalar x = square2.row(c) * square2.col(c2); |
| VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum()); |
| } |
| |
| // outer product |
| { |
| VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0, c, rows, 1) * m1.block(r, 0, 1, cols)); |
| VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), |
| m1.block(r, 0, 1, cols).transpose() * m1.block(0, c, rows, 1).transpose()); |
| VERIFY_IS_APPROX(m1.block(0, c, rows, 1) * m1.row(r), m1.block(0, c, rows, 1) * m1.block(r, 0, 1, cols)); |
| VERIFY_IS_APPROX(m1.col(c) * m1.block(r, 0, 1, cols), m1.block(0, c, rows, 1) * m1.block(r, 0, 1, cols)); |
| VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0, 0, rows, 1) * m1.block(r, 0, 1, cols)); |
| VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0, c, rows, 1) * m1.block(0, 0, 1, cols)); |
| } |
| |
| // Aliasing |
| { |
| ColVectorType x(cols); |
| x.setRandom(); |
| ColVectorType z(x); |
| ColVectorType y(cols); |
| y.setZero(); |
| ColSquareMatrixType A(cols, cols); |
| A.setRandom(); |
| // CwiseBinaryOp |
| VERIFY_IS_APPROX(x = y + A * x, A * z); |
| x = z; |
| VERIFY_IS_APPROX(x = y - A * x, A * (-z)); |
| x = z; |
| // CwiseUnaryOp |
| VERIFY_IS_APPROX(x = Scalar(1.) * (A * x), A * z); |
| } |
| |
| // regression for blas_trais |
| { |
| // Increase test tolerance, since coefficients can get relatively large. |
| RealScalar tol = RealScalar(2) * get_test_precision(square); |
| VERIFY( |
| verifyIsApprox(square * (square * square).transpose(), square * square.transpose() * square.transpose(), tol)); |
| VERIFY(verifyIsApprox(square * (-(square * square)), -square * square * square, tol)); |
| VERIFY(verifyIsApprox(square * (s1 * (square * square)), s1 * square * square * square, tol)); |
| VERIFY( |
| verifyIsApprox(square * (square * square).conjugate(), square * square.conjugate() * square.conjugate(), tol)); |
| } |
| |
| // destination with a non-default inner-stride |
| // see bug 1741 |
| if (!MatrixType::IsRowMajor) { |
| typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX; |
| MatrixX buffer(2 * rows, 2 * rows); |
| Map<RowSquareMatrixType, 0, Stride<Dynamic, 2> > map1(buffer.data(), rows, rows, Stride<Dynamic, 2>(2 * rows, 2)); |
| buffer.setZero(); |
| VERIFY_IS_APPROX(map1 = m1 * m2.transpose(), (m1 * m2.transpose()).eval()); |
| buffer.setZero(); |
| VERIFY_IS_APPROX(map1.noalias() = m1 * m2.transpose(), (m1 * m2.transpose()).eval()); |
| buffer.setZero(); |
| VERIFY_IS_APPROX(map1.noalias() += m1 * m2.transpose(), (m1 * m2.transpose()).eval()); |
| } |
| } |