blob: fd41d73020affa1002bff72c9e57d3f31933f1dd [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H
/** \ingroup Sparse_Module
*
* \class SparseMatrix
*
* \brief The main sparse matrix class
*
* This class implements a sparse matrix using the very common compressed row/column storage
* scheme.
*
* \param _Scalar the scalar type, i.e. the type of the coefficients
* \param _Options Union of bit flags controlling the storage scheme. Currently the only possibility
* is RowMajor. The default is 0 which means column-major.
*
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
*
*/
template<typename _Scalar, int _Options>
struct ei_traits<SparseMatrix<_Scalar, _Options> >
{
typedef _Scalar Scalar;
typedef Sparse StorageKind;
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
Flags = _Options | NestByRefBit,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = InnerRandomAccessPattern
};
};
template<typename _Scalar, int _Options>
class SparseMatrix
: public SparseMatrixBase<SparseMatrix<_Scalar, _Options> >
{
public:
EIGEN_SPARSE_GENERIC_PUBLIC_INTERFACE(SparseMatrix)
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=)
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=)
// FIXME: why are these operator already alvailable ???
// EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, *=)
// EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, /=)
typedef MappedSparseMatrix<Scalar,Flags> Map;
using Base::IsRowMajor;
protected:
typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
Index m_outerSize;
Index m_innerSize;
Index* m_outerIndex;
CompressedStorage<Scalar> m_data;
public:
inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
inline Index innerSize() const { return m_innerSize; }
inline Index outerSize() const { return m_outerSize; }
inline Index innerNonZeros(Index j) const { return m_outerIndex[j+1]-m_outerIndex[j]; }
inline const Scalar* _valuePtr() const { return &m_data.value(0); }
inline Scalar* _valuePtr() { return &m_data.value(0); }
inline const Index* _innerIndexPtr() const { return &m_data.index(0); }
inline Index* _innerIndexPtr() { return &m_data.index(0); }
inline const Index* _outerIndexPtr() const { return m_outerIndex; }
inline Index* _outerIndexPtr() { return m_outerIndex; }
inline Scalar coeff(Index row, Index col) const
{
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
return m_data.atInRange(m_outerIndex[outer], m_outerIndex[outer+1], inner);
}
inline Scalar& coeffRef(Index row, Index col)
{
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index start = m_outerIndex[outer];
Index end = m_outerIndex[outer+1];
ei_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
ei_assert(end>start && "coeffRef cannot be called on a zero coefficient");
const Index id = m_data.searchLowerIndex(start,end-1,inner);
ei_assert((id<end) && (m_data.index(id)==inner) && "coeffRef cannot be called on a zero coefficient");
return m_data.value(id);
}
public:
class InnerIterator;
/** Removes all non zeros */
inline void setZero()
{
m_data.clear();
memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
}
/** \returns the number of non zero coefficients */
inline Index nonZeros() const { return static_cast<Index>(m_data.size()); }
/** \deprecated use setZero() and reserve()
* Initializes the filling process of \c *this.
* \param reserveSize approximate number of nonzeros
* Note that the matrix \c *this is zero-ed.
*/
EIGEN_DEPRECATED void startFill(Index reserveSize = 1000)
{
setZero();
m_data.reserve(reserveSize);
}
/** Preallocates \a reserveSize non zeros */
inline void reserve(Index reserveSize)
{
m_data.reserve(reserveSize);
}
/** \deprecated use insert()
*/
EIGEN_DEPRECATED Scalar& fill(Index row, Index col)
{
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
if (m_outerIndex[outer+1]==0)
{
// we start a new inner vector
Index i = outer;
while (i>=0 && m_outerIndex[i]==0)
{
m_outerIndex[i] = m_data.size();
--i;
}
m_outerIndex[outer+1] = m_outerIndex[outer];
}
else
{
ei_assert(m_data.index(m_data.size()-1)<inner && "wrong sorted insertion");
}
// std::cerr << size_t(m_outerIndex[outer+1]) << " == " << m_data.size() << "\n";
assert(size_t(m_outerIndex[outer+1]) == m_data.size());
Index id = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
m_data.append(0, inner);
return m_data.value(id);
}
//--- low level purely coherent filling ---
inline Scalar& insertBack(Index outer, Index inner)
{
ei_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "wrong sorted insertion");
ei_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "wrong sorted insertion");
Index id = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
m_data.append(0, inner);
return m_data.value(id);
}
inline Scalar& insertBackNoCheck(Index outer, Index inner)
{
Index id = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
m_data.append(0, inner);
return m_data.value(id);
}
inline void startVec(Index outer)
{
ei_assert(m_outerIndex[outer]==int(m_data.size()) && "you must call startVec on each inner vec");
ei_assert(m_outerIndex[outer+1]==0 && "you must call startVec on each inner vec");
m_outerIndex[outer+1] = m_outerIndex[outer];
}
//---
/** \deprecated use insert()
* Like fill() but with random inner coordinates.
*/
EIGEN_DEPRECATED Scalar& fillrand(Index row, Index col)
{
return insert(row,col);
}
/** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
* The non zero coefficient must \b not already exist.
*
* \warning This function can be extremely slow if the non zero coefficients
* are not inserted in a coherent order.
*
* After an insertion session, you should call the finalize() function.
*/
EIGEN_DONT_INLINE Scalar& insert(Index row, Index col)
{
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index previousOuter = outer;
if (m_outerIndex[outer+1]==0)
{
// we start a new inner vector
while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
{
m_outerIndex[previousOuter] = static_cast<Index>(m_data.size());
--previousOuter;
}
m_outerIndex[outer+1] = m_outerIndex[outer];
}
// here we have to handle the tricky case where the outerIndex array
// starts with: [ 0 0 0 0 0 1 ...] and we are inserting in, e.g.,
// the 2nd inner vector...
bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
&& (size_t(m_outerIndex[outer+1]) == m_data.size());
size_t startId = m_outerIndex[outer];
// FIXME let's make sure sizeof(long int) == sizeof(size_t)
size_t id = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
float reallocRatio = 1;
if (m_data.allocatedSize()<=m_data.size())
{
// if there is no preallocated memory, let's reserve a minimum of 32 elements
if (m_data.size()==0)
{
m_data.reserve(32);
}
else
{
// we need to reallocate the data, to reduce multiple reallocations
// we use a smart resize algorithm based on the current filling ratio
// in addition, we use float to avoid integers overflows
float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1);
reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size());
// furthermore we bound the realloc ratio to:
// 1) reduce multiple minor realloc when the matrix is almost filled
// 2) avoid to allocate too much memory when the matrix is almost empty
reallocRatio = std::min(std::max(reallocRatio,1.5f),8.f);
}
}
m_data.resize(m_data.size()+1,reallocRatio);
if (!isLastVec)
{
if (previousOuter==-1)
{
// oops wrong guess.
// let's correct the outer offsets
for (Index k=0; k<=(outer+1); ++k)
m_outerIndex[k] = 0;
Index k=outer+1;
while(m_outerIndex[k]==0)
m_outerIndex[k++] = 1;
while (k<=m_outerSize && m_outerIndex[k]!=0)
m_outerIndex[k++]++;
id = 0;
--k;
k = m_outerIndex[k]-1;
while (k>0)
{
m_data.index(k) = m_data.index(k-1);
m_data.value(k) = m_data.value(k-1);
k--;
}
}
else
{
// we are not inserting into the last inner vec
// update outer indices:
Index j = outer+2;
while (j<=m_outerSize && m_outerIndex[j]!=0)
m_outerIndex[j++]++;
--j;
// shift data of last vecs:
Index k = m_outerIndex[j]-1;
while (k>=Index(id))
{
m_data.index(k) = m_data.index(k-1);
m_data.value(k) = m_data.value(k-1);
k--;
}
}
}
while ( (id > startId) && (m_data.index(id-1) > inner) )
{
m_data.index(id) = m_data.index(id-1);
m_data.value(id) = m_data.value(id-1);
--id;
}
m_data.index(id) = inner;
return (m_data.value(id) = 0);
}
EIGEN_DEPRECATED void endFill() { finalize(); }
/** Must be called after inserting a set of non zero entries.
*/
inline void finalize()
{
Index size = static_cast<Index>(m_data.size());
Index i = m_outerSize;
// find the last filled column
while (i>=0 && m_outerIndex[i]==0)
--i;
++i;
while (i<=m_outerSize)
{
m_outerIndex[i] = size;
++i;
}
}
void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
{
Index k = 0;
for (Index j=0; j<m_outerSize; ++j)
{
Index previousStart = m_outerIndex[j];
m_outerIndex[j] = k;
Index end = m_outerIndex[j+1];
for (Index i=previousStart; i<end; ++i)
{
if (!ei_isMuchSmallerThan(m_data.value(i), reference, epsilon))
{
m_data.value(k) = m_data.value(i);
m_data.index(k) = m_data.index(i);
++k;
}
}
}
m_outerIndex[m_outerSize] = k;
m_data.resize(k,0);
}
/** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero
* \sa resizeNonZeros(Index), reserve(), setZero()
*/
void resize(Index rows, Index cols)
{
const Index outerSize = IsRowMajor ? rows : cols;
m_innerSize = IsRowMajor ? cols : rows;
m_data.clear();
if (m_outerSize != outerSize || m_outerSize==0)
{
delete[] m_outerIndex;
m_outerIndex = new Index [outerSize+1];
m_outerSize = outerSize;
}
memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
}
void resizeNonZeros(Index size)
{
m_data.resize(size);
}
inline SparseMatrix()
: m_outerSize(-1), m_innerSize(0), m_outerIndex(0)
{
resize(0, 0);
}
inline SparseMatrix(Index rows, Index cols)
: m_outerSize(0), m_innerSize(0), m_outerIndex(0)
{
resize(rows, cols);
}
template<typename OtherDerived>
inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
: m_outerSize(0), m_innerSize(0), m_outerIndex(0)
{
*this = other.derived();
}
inline SparseMatrix(const SparseMatrix& other)
: Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0)
{
*this = other.derived();
}
inline void swap(SparseMatrix& other)
{
//EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
std::swap(m_outerIndex, other.m_outerIndex);
std::swap(m_innerSize, other.m_innerSize);
std::swap(m_outerSize, other.m_outerSize);
m_data.swap(other.m_data);
}
inline SparseMatrix& operator=(const SparseMatrix& other)
{
// std::cout << "SparseMatrix& operator=(const SparseMatrix& other)\n";
if (other.isRValue())
{
swap(other.const_cast_derived());
}
else
{
resize(other.rows(), other.cols());
memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(Index));
m_data = other.m_data;
}
return *this;
}
template<typename Lhs, typename Rhs>
inline SparseMatrix& operator=(const SparseProduct<Lhs,Rhs>& product)
{
return Base::operator=(product);
}
template<typename OtherDerived>
EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
{
const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
if (needToTranspose)
{
// two passes algorithm:
// 1 - compute the number of coeffs per dest inner vector
// 2 - do the actual copy/eval
// Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
typedef typename ei_nested<OtherDerived,2>::type OtherCopy;
typedef typename ei_cleantype<OtherCopy>::type _OtherCopy;
OtherCopy otherCopy(other.derived());
resize(other.rows(), other.cols());
Eigen::Map<Matrix<Index, Dynamic, 1> > (m_outerIndex,outerSize()).setZero();
// pass 1
// FIXME the above copy could be merged with that pass
for (Index j=0; j<otherCopy.outerSize(); ++j)
for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
++m_outerIndex[it.index()];
// prefix sum
Index count = 0;
VectorXi positions(outerSize());
for (Index j=0; j<outerSize(); ++j)
{
Index tmp = m_outerIndex[j];
m_outerIndex[j] = count;
positions[j] = count;
count += tmp;
}
m_outerIndex[outerSize()] = count;
// alloc
m_data.resize(count);
// pass 2
for (Index j=0; j<otherCopy.outerSize(); ++j)
{
for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
{
Index pos = positions[it.index()]++;
m_data.index(pos) = j;
m_data.value(pos) = it.value();
}
}
return *this;
}
else
{
// there is no special optimization
return SparseMatrixBase<SparseMatrix>::operator=(other.derived());
}
}
friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
{
EIGEN_DBG_SPARSE(
s << "Nonzero entries:\n";
for (Index i=0; i<m.nonZeros(); ++i)
{
s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
}
s << std::endl;
s << std::endl;
s << "Column pointers:\n";
for (Index i=0; i<m.outerSize(); ++i)
{
s << m.m_outerIndex[i] << " ";
}
s << " $" << std::endl;
s << std::endl;
);
s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
return s;
}
/** Destructor */
inline ~SparseMatrix()
{
delete[] m_outerIndex;
}
/** Overloaded for performance */
Scalar sum() const;
};
template<typename Scalar, int _Options>
class SparseMatrix<Scalar,_Options>::InnerIterator
{
public:
InnerIterator(const SparseMatrix& mat, Index outer)
: m_matrix(mat), m_outer(outer), m_id(mat.m_outerIndex[outer]), m_start(m_id), m_end(mat.m_outerIndex[outer+1])
{}
template<unsigned int Added, unsigned int Removed>
InnerIterator(const Flagged<SparseMatrix,Added,Removed>& mat, Index outer)
: m_matrix(mat._expression()), m_outer(outer), m_id(m_matrix.m_outerIndex[outer]),
m_start(m_id), m_end(m_matrix.m_outerIndex[outer+1])
{}
inline InnerIterator& operator++() { m_id++; return *this; }
inline Scalar value() const { return m_matrix.m_data.value(m_id); }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.m_data.value(m_id)); }
inline Index index() const { return m_matrix.m_data.index(m_id); }
inline Index outer() const { return m_outer; }
inline Index row() const { return IsRowMajor ? m_outer : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer; }
inline operator bool() const { return (m_id < m_end) && (m_id>=m_start); }
protected:
const SparseMatrix& m_matrix;
const Index m_outer;
Index m_id;
const Index m_start;
const Index m_end;
};
#endif // EIGEN_SPARSEMATRIX_H