| |
| template<typename FunctorType, typename Scalar> |
| DenseIndex ei_fdjac1( |
| const FunctorType &Functor, |
| Matrix< Scalar, Dynamic, 1 > &x, |
| Matrix< Scalar, Dynamic, 1 > &fvec, |
| Matrix< Scalar, Dynamic, Dynamic > &fjac, |
| DenseIndex ml, DenseIndex mu, |
| Scalar epsfcn) |
| { |
| typedef DenseIndex Index; |
| |
| /* Local variables */ |
| Scalar h; |
| Index j, k; |
| Scalar eps, temp; |
| Index msum; |
| int iflag; |
| Index start, length; |
| |
| /* Function Body */ |
| const Scalar epsmch = NumTraits<Scalar>::epsilon(); |
| const Index n = x.size(); |
| assert(fvec.size()==n); |
| Matrix< Scalar, Dynamic, 1 > wa1(n); |
| Matrix< Scalar, Dynamic, 1 > wa2(n); |
| |
| eps = ei_sqrt(std::max(epsfcn,epsmch)); |
| msum = ml + mu + 1; |
| if (msum >= n) { |
| /* computation of dense approximate jacobian. */ |
| for (j = 0; j < n; ++j) { |
| temp = x[j]; |
| h = eps * ei_abs(temp); |
| if (h == 0.) |
| h = eps; |
| x[j] = temp + h; |
| iflag = Functor(x, wa1); |
| if (iflag < 0) |
| return iflag; |
| x[j] = temp; |
| fjac.col(j) = (wa1-fvec)/h; |
| } |
| |
| }else { |
| /* computation of banded approximate jacobian. */ |
| for (k = 0; k < msum; ++k) { |
| for (j = k; (msum<0) ? (j>n): (j<n); j += msum) { |
| wa2[j] = x[j]; |
| h = eps * ei_abs(wa2[j]); |
| if (h == 0.) h = eps; |
| x[j] = wa2[j] + h; |
| } |
| iflag = Functor(x, wa1); |
| if (iflag < 0) |
| return iflag; |
| for (j = k; (msum<0) ? (j>n): (j<n); j += msum) { |
| x[j] = wa2[j]; |
| h = eps * ei_abs(wa2[j]); |
| if (h == 0.) h = eps; |
| fjac.col(j).setZero(); |
| start = std::max<Index>(0,j-mu); |
| length = std::min(n-1, j+ml) - start + 1; |
| fjac.col(j).segment(start, length) = ( wa1.segment(start, length)-fvec.segment(start, length))/h; |
| } |
| } |
| } |
| return 0; |
| } |
| |