digamma special function: merge shared code.

Moved type-specific code into a helper class digamma_impl_maybe_poly<Scalar>.
diff --git a/Eigen/src/Core/SpecialFunctions.h b/Eigen/src/Core/SpecialFunctions.h
index bd02294..21583e6 100644
--- a/Eigen/src/Core/SpecialFunctions.h
+++ b/Eigen/src/Core/SpecialFunctions.h
@@ -134,8 +134,23 @@
  * Implementation of digamma (psi)                                          *
  ****************************************************************************/
 
+#ifdef EIGEN_HAS_C99_MATH
+
+/*
+ *
+ * Polynomial evaluation helper for the Psi (digamma) function.
+ *
+ * digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for
+ * input Scalar s, assuming s is above 10.0.
+ *
+ * If s is above a certain threshold for the given Scalar type, zero
+ * is returned.  Otherwise the polynomial is evaluated with enough
+ * coefficients for results matching Scalar machine precision.
+ *
+ *
+ */
 template <typename Scalar>
-struct digamma_impl {
+struct digamma_impl_maybe_poly {
   EIGEN_DEVICE_FUNC
   static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
     EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
@@ -144,72 +159,11 @@
   }
 };
 
-template <typename Scalar>
-struct digamma_retval {
-  typedef Scalar type;
-};
 
-#ifdef EIGEN_HAS_C99_MATH
 template <>
-struct digamma_impl<float> {
-  /*
-   * Psi (digamma) function (modified for Eigen)
-   *
-   *
-   * SYNOPSIS:
-   *
-   * float x, y, psif();
-   *
-   * y = psif( x );
-   *
-   *
-   * DESCRIPTION:
-   *
-   *              d      -
-   *   psi(x)  =  -- ln | (x)
-   *              dx
-   *
-   * is the logarithmic derivative of the gamma function.
-   * For integer x,
-   *                   n-1
-   *                    -
-   * psi(n) = -EUL  +   >  1/k.
-   *                    -
-   *                   k=1
-   *
-   * If x is negative, it is transformed to a positive argument by the
-   * reflection formula  psi(1-x) = psi(x) + pi cot(pi x).
-   * For general positive x, the argument is made greater than 10
-   * using the recurrence  psi(x+1) = psi(x) + 1/x.
-   * Then the following asymptotic expansion is applied:
-   *
-   *                           inf.   B
-   *                            -      2k
-   * psi(x) = log(x) - 1/2x -   >   -------
-   *                            -        2k
-   *                           k=1   2k x
-   *
-   * where the B2k are Bernoulli numbers.
-   *
-   * ACCURACY:
-   *    Absolute error,  relative when |psi| > 1 :
-   * arithmetic   domain     # trials      peak         rms
-   *    IEEE      -33,0        30000      8.2e-7      1.2e-7
-   *    IEEE      0,33        100000      7.3e-7      7.7e-8
-   *
-   * ERROR MESSAGES:
-   *     message         condition      value returned
-   * psi singularity    x integer <=0      INFINITY
-   */
+struct digamma_impl_maybe_poly<float> {
   EIGEN_DEVICE_FUNC
-  static float run(float xx) {
-    float p, q, nz, x, s, w, y, z;
-    bool negative;
-
-    // Some necessary constants
-    const float m_pif = 3.141592653589793238;
-    const float maxnumf = std::numeric_limits<float>::infinity();
-
+  static EIGEN_STRONG_INLINE float run(const float s) {
     const float A[] = {
       -4.16666666666666666667E-3,
       3.96825396825396825397E-3,
@@ -217,53 +171,49 @@
       8.33333333333333333333E-2
     };
 
-    x = xx;
-    nz = 0.0f;
-    negative = 0;
-    if (x <= 0.0f) {
-      negative = 1;
-      q = x;
-      p = ::floor(q);
-      if (p == q) {
-        return (maxnumf);
-      }
-      nz = q - p;
-      if (nz != 0.5f) {
-        if (nz > 0.5f) {
-          p += 1.0f;
-          nz = q - p;
-        }
-        nz = m_pif / ::tan(m_pif * nz);
-      } else {
-        nz = 0.0f;
-      }
-      x = 1.0f - x;
-    }
-
-    /* use the recurrence psi(x+1) = psi(x) + 1/x. */
-    s = x;
-    w = 0.0f;
-    while (s < 10.0f) {
-      w += 1.0f / s;
-      s += 1.0f;
-    }
-
+    float z;
     if (s < 1.0e8f) {
       z = 1.0f / (s * s);
-      y = z * cephes::polevl<float, 3>::run(z, A);
-    } else
-      y = 0.0f;
-
-    y = ::log(s) - (0.5f / s) - y - w;
-
-    return (negative) ? y - nz : y;
+      return z * cephes::polevl<float, 3>::run(z, A);
+    } else return 0.0f;
   }
 };
 
 template <>
-struct digamma_impl<double> {
+struct digamma_impl_maybe_poly<double> {
   EIGEN_DEVICE_FUNC
-  static double run(double x) {
+  static EIGEN_STRONG_INLINE double run(const double s) {
+    const double A[] = {
+      8.33333333333333333333E-2,
+      -2.10927960927960927961E-2,
+      7.57575757575757575758E-3,
+      -4.16666666666666666667E-3,
+      3.96825396825396825397E-3,
+      -8.33333333333333333333E-3,
+      8.33333333333333333333E-2
+    };
+
+    double z;
+    if (s < 1.0e17) {
+      z = 1.0 / (s * s);
+      return z * cephes::polevl<double, 6>::run(z, A);
+    }
+    else return 0.0;
+  }
+};
+
+#endif  // EIGEN_HAS_C99_MATH
+
+template <typename Scalar>
+struct digamma_retval {
+  typedef Scalar type;
+};
+
+#ifdef EIGEN_HAS_C99_MATH
+template <typename Scalar>
+struct digamma_impl {
+  EIGEN_DEVICE_FUNC
+  static Scalar run(Scalar x) {
     /*
      *
      *     Psi (digamma) function (modified for Eigen)
@@ -304,38 +254,38 @@
      *
      * where the B2k are Bernoulli numbers.
      *
-     * ACCURACY:
+     * ACCURACY (float):
      *    Relative error (except absolute when |psi| < 1):
      * arithmetic   domain     # trials      peak         rms
      *    IEEE      0,30        30000       1.3e-15     1.4e-16
      *    IEEE      -30,0       40000       1.5e-15     2.2e-16
      *
+     * ACCURACY (double):
+     *    Absolute error,  relative when |psi| > 1 :
+     * arithmetic   domain     # trials      peak         rms
+     *    IEEE      -33,0        30000      8.2e-7      1.2e-7
+     *    IEEE      0,33        100000      7.3e-7      7.7e-8
+     *
      * ERROR MESSAGES:
      *     message         condition      value returned
      * psi singularity    x integer <=0      INFINITY
      */
 
-    double p, q, nz, s, w, y, z;
+    Scalar p, q, nz, s, w, y;
     bool negative;
 
-    const double A[] = {
-      8.33333333333333333333E-2,
-      -2.10927960927960927961E-2,
-      7.57575757575757575758E-3,
-      -4.16666666666666666667E-3,
-      3.96825396825396825397E-3,
-      -8.33333333333333333333E-3,
-      8.33333333333333333333E-2
-    };
-
-    const double maxnum = std::numeric_limits<double>::infinity();
-    const double m_pi = 3.14159265358979323846;
+    const Scalar maxnum = std::numeric_limits<Scalar>::infinity();
+    const Scalar m_pi = 3.14159265358979323846;
 
     negative = 0;
     nz = 0.0;
 
-    if (x <= 0.0) {
-      negative = 1;
+    const Scalar zero = 0.0;
+    const Scalar one = 1.0;
+    const Scalar half = 0.5;
+
+    if (x <= zero) {
+      negative = one;
       q = x;
       p = ::floor(q);
       if (p == q) {
@@ -345,41 +295,36 @@
        * by subtracting the nearest integer from x
        */
       nz = q - p;
-      if (nz != 0.5) {
-        if (nz > 0.5) {
-          p += 1.0;
+      if (nz != half) {
+        if (nz > half) {
+          p += one;
           nz = q - p;
         }
         nz = m_pi / ::tan(m_pi * nz);
       }
       else {
-        nz = 0.0;
+        nz = zero;
       }
-      x = 1.0 - x;
+      x = one - x;
     }
 
     /* use the recurrence psi(x+1) = psi(x) + 1/x. */
     s = x;
-    w = 0.0;
-    while (s < 10.0) {
-      w += 1.0 / s;
-      s += 1.0;
+    w = zero;
+    while (s < Scalar(10)) {
+      w += one / s;
+      s += one;
     }
 
-    if (s < 1.0e17) {
-      z = 1.0 / (s * s);
-      y = z * cephes::polevl<double, 6>::run(z, A);
-    }
-    else
-      y = 0.0;
+    y = digamma_impl_maybe_poly<Scalar>::run(s);
 
-    y = ::log(s) - (0.5 / s) - y - w;
+    y = ::log(s) - (half / s) - y - w;
 
     return (negative) ? y - nz : y;
   }
 };
 
-#endif
+#endif  // EIGEN_HAS_C99_MATH
 
 /****************************************************************************
  * Implementation of erf                                                    *