| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_CWISE_UNARY_OP_H |
| #define EIGEN_CWISE_UNARY_OP_H |
| |
| namespace Eigen { |
| |
| /** \class CwiseUnaryOp |
| * \ingroup Core_Module |
| * |
| * \brief Generic expression where a coefficient-wise unary operator is applied to an expression |
| * |
| * \param UnaryOp template functor implementing the operator |
| * \param XprType the type of the expression to which we are applying the unary operator |
| * |
| * This class represents an expression where a unary operator is applied to an expression. |
| * It is the return type of all operations taking exactly 1 input expression, regardless of the |
| * presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix |
| * is considered unary, because only the right-hand side is an expression, and its |
| * return type is a specialization of CwiseUnaryOp. |
| * |
| * Most of the time, this is the only way that it is used, so you typically don't have to name |
| * CwiseUnaryOp types explicitly. |
| * |
| * \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp |
| */ |
| |
| namespace internal { |
| template<typename UnaryOp, typename XprType> |
| struct traits<CwiseUnaryOp<UnaryOp, XprType> > |
| : traits<XprType> |
| { |
| typedef typename result_of< |
| UnaryOp(typename XprType::Scalar) |
| >::type Scalar; |
| typedef typename XprType::Nested XprTypeNested; |
| typedef typename remove_reference<XprTypeNested>::type _XprTypeNested; |
| enum { |
| Flags = _XprTypeNested::Flags & ( |
| HereditaryBits | LinearAccessBit | AlignedBit |
| | (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)), |
| CoeffReadCost = _XprTypeNested::CoeffReadCost + functor_traits<UnaryOp>::Cost |
| }; |
| }; |
| } |
| |
| template<typename UnaryOp, typename XprType, typename StorageKind> |
| class CwiseUnaryOpImpl; |
| |
| template<typename UnaryOp, typename XprType> |
| class CwiseUnaryOp : internal::no_assignment_operator, |
| public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal::traits<XprType>::StorageKind> |
| { |
| public: |
| |
| typedef typename CwiseUnaryOpImpl<UnaryOp, XprType,typename internal::traits<XprType>::StorageKind>::Base Base; |
| EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp) |
| |
| inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp()) |
| : m_xpr(xpr), m_functor(func) {} |
| |
| EIGEN_STRONG_INLINE Index rows() const { return m_xpr.rows(); } |
| EIGEN_STRONG_INLINE Index cols() const { return m_xpr.cols(); } |
| |
| /** \returns the functor representing the unary operation */ |
| const UnaryOp& functor() const { return m_functor; } |
| |
| /** \returns the nested expression */ |
| const typename internal::remove_all<typename XprType::Nested>::type& |
| nestedExpression() const { return m_xpr; } |
| |
| /** \returns the nested expression */ |
| typename internal::remove_all<typename XprType::Nested>::type& |
| nestedExpression() { return m_xpr.const_cast_derived(); } |
| |
| protected: |
| typename XprType::Nested m_xpr; |
| const UnaryOp m_functor; |
| }; |
| |
| // This is the generic implementation for dense storage. |
| // It can be used for any expression types implementing the dense concept. |
| template<typename UnaryOp, typename XprType> |
| class CwiseUnaryOpImpl<UnaryOp,XprType,Dense> |
| : public internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type |
| { |
| public: |
| |
| typedef CwiseUnaryOp<UnaryOp, XprType> Derived; |
| typedef typename internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base; |
| EIGEN_DENSE_PUBLIC_INTERFACE(Derived) |
| |
| EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const |
| { |
| return derived().functor()(derived().nestedExpression().coeff(rowId, colId)); |
| } |
| |
| template<int LoadMode> |
| EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const |
| { |
| return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(rowId, colId)); |
| } |
| |
| EIGEN_STRONG_INLINE const Scalar coeff(Index index) const |
| { |
| return derived().functor()(derived().nestedExpression().coeff(index)); |
| } |
| |
| template<int LoadMode> |
| EIGEN_STRONG_INLINE PacketScalar packet(Index index) const |
| { |
| return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(index)); |
| } |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CWISE_UNARY_OP_H |