| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway |
| |
| namespace Eigen { |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class Hyperplane |
| * |
| * \brief A hyperplane |
| * |
| * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n. |
| * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane. |
| * |
| * \param _Scalar the scalar type, i.e., the type of the coefficients |
| * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. |
| * Notice that the dimension of the hyperplane is _AmbientDim-1. |
| * |
| * This class represents an hyperplane as the zero set of the implicit equation |
| * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part) |
| * and \f$ d \f$ is the distance (offset) to the origin. |
| */ |
| template <typename _Scalar, int _AmbientDim> |
| class Hyperplane |
| { |
| public: |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1) |
| enum { AmbientDimAtCompileTime = _AmbientDim }; |
| typedef _Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; |
| typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic |
| ? Dynamic |
| : int(AmbientDimAtCompileTime)+1,1> Coefficients; |
| typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType; |
| |
| /** Default constructor without initialization */ |
| inline explicit Hyperplane() {} |
| |
| /** Constructs a dynamic-size hyperplane with \a _dim the dimension |
| * of the ambient space */ |
| inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {} |
| |
| /** Construct a plane from its normal \a n and a point \a e onto the plane. |
| * \warning the vector normal is assumed to be normalized. |
| */ |
| inline Hyperplane(const VectorType& n, const VectorType& e) |
| : m_coeffs(n.size()+1) |
| { |
| normal() = n; |
| offset() = -e.eigen2_dot(n); |
| } |
| |
| /** Constructs a plane from its normal \a n and distance to the origin \a d |
| * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$. |
| * \warning the vector normal is assumed to be normalized. |
| */ |
| inline Hyperplane(const VectorType& n, Scalar d) |
| : m_coeffs(n.size()+1) |
| { |
| normal() = n; |
| offset() = d; |
| } |
| |
| /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space |
| * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made. |
| */ |
| static inline Hyperplane Through(const VectorType& p0, const VectorType& p1) |
| { |
| Hyperplane result(p0.size()); |
| result.normal() = (p1 - p0).unitOrthogonal(); |
| result.offset() = -result.normal().eigen2_dot(p0); |
| return result; |
| } |
| |
| /** Constructs a hyperplane passing through the three points. The dimension of the ambient space |
| * is required to be exactly 3. |
| */ |
| static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3) |
| Hyperplane result(p0.size()); |
| result.normal() = (p2 - p0).cross(p1 - p0).normalized(); |
| result.offset() = -result.normal().eigen2_dot(p0); |
| return result; |
| } |
| |
| /** Constructs a hyperplane passing through the parametrized line \a parametrized. |
| * If the dimension of the ambient space is greater than 2, then there isn't uniqueness, |
| * so an arbitrary choice is made. |
| */ |
| // FIXME to be consitent with the rest this could be implemented as a static Through function ?? |
| explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized) |
| { |
| normal() = parametrized.direction().unitOrthogonal(); |
| offset() = -normal().eigen2_dot(parametrized.origin()); |
| } |
| |
| ~Hyperplane() {} |
| |
| /** \returns the dimension in which the plane holds */ |
| inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); } |
| |
| /** normalizes \c *this */ |
| void normalize(void) |
| { |
| m_coeffs /= normal().norm(); |
| } |
| |
| /** \returns the signed distance between the plane \c *this and a point \a p. |
| * \sa absDistance() |
| */ |
| inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); } |
| |
| /** \returns the absolute distance between the plane \c *this and a point \a p. |
| * \sa signedDistance() |
| */ |
| inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); } |
| |
| /** \returns the projection of a point \a p onto the plane \c *this. |
| */ |
| inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); } |
| |
| /** \returns a constant reference to the unit normal vector of the plane, which corresponds |
| * to the linear part of the implicit equation. |
| */ |
| inline const NormalReturnType normal() const { return NormalReturnType(*const_cast<Coefficients*>(&m_coeffs),0,0,dim(),1); } |
| |
| /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds |
| * to the linear part of the implicit equation. |
| */ |
| inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); } |
| |
| /** \returns the distance to the origin, which is also the "constant term" of the implicit equation |
| * \warning the vector normal is assumed to be normalized. |
| */ |
| inline const Scalar& offset() const { return m_coeffs.coeff(dim()); } |
| |
| /** \returns a non-constant reference to the distance to the origin, which is also the constant part |
| * of the implicit equation */ |
| inline Scalar& offset() { return m_coeffs(dim()); } |
| |
| /** \returns a constant reference to the coefficients c_i of the plane equation: |
| * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ |
| */ |
| inline const Coefficients& coeffs() const { return m_coeffs; } |
| |
| /** \returns a non-constant reference to the coefficients c_i of the plane equation: |
| * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ |
| */ |
| inline Coefficients& coeffs() { return m_coeffs; } |
| |
| /** \returns the intersection of *this with \a other. |
| * |
| * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines. |
| * |
| * \note If \a other is approximately parallel to *this, this method will return any point on *this. |
| */ |
| VectorType intersection(const Hyperplane& other) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) |
| Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0); |
| // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests |
| // whether the two lines are approximately parallel. |
| if(ei_isMuchSmallerThan(det, Scalar(1))) |
| { // special case where the two lines are approximately parallel. Pick any point on the first line. |
| if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0))) |
| return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0)); |
| else |
| return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0)); |
| } |
| else |
| { // general case |
| Scalar invdet = Scalar(1) / det; |
| return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)), |
| invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2))); |
| } |
| } |
| |
| /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this. |
| * |
| * \param mat the Dim x Dim transformation matrix |
| * \param traits specifies whether the matrix \a mat represents an Isometry |
| * or a more generic Affine transformation. The default is Affine. |
| */ |
| template<typename XprType> |
| inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine) |
| { |
| if (traits==Affine) |
| normal() = mat.inverse().transpose() * normal(); |
| else if (traits==Isometry) |
| normal() = mat * normal(); |
| else |
| { |
| ei_assert("invalid traits value in Hyperplane::transform()"); |
| } |
| return *this; |
| } |
| |
| /** Applies the transformation \a t to \c *this and returns a reference to \c *this. |
| * |
| * \param t the transformation of dimension Dim |
| * \param traits specifies whether the transformation \a t represents an Isometry |
| * or a more generic Affine transformation. The default is Affine. |
| * Other kind of transformations are not supported. |
| */ |
| inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t, |
| TransformTraits traits = Affine) |
| { |
| transform(t.linear(), traits); |
| offset() -= t.translation().eigen2_dot(normal()); |
| return *this; |
| } |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template<typename NewScalarType> |
| inline typename internal::cast_return_type<Hyperplane, |
| Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const |
| { |
| return typename internal::cast_return_type<Hyperplane, |
| Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this); |
| } |
| |
| /** Copy constructor with scalar type conversion */ |
| template<typename OtherScalarType> |
| inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other) |
| { m_coeffs = other.coeffs().template cast<Scalar>(); } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const |
| { return m_coeffs.isApprox(other.m_coeffs, prec); } |
| |
| protected: |
| |
| Coefficients m_coeffs; |
| }; |
| |
| } // end namespace Eigen |