| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Claire Maurice |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H |
| #define EIGEN_COMPLEX_EIGEN_SOLVER_H |
| |
| #include "./ComplexSchur.h" |
| |
| namespace Eigen { |
| |
| /** \eigenvalues_module \ingroup Eigenvalues_Module |
| * |
| * |
| * \class ComplexEigenSolver |
| * |
| * \brief Computes eigenvalues and eigenvectors of general complex matrices |
| * |
| * \tparam _MatrixType the type of the matrix of which we are |
| * computing the eigendecomposition; this is expected to be an |
| * instantiation of the Matrix class template. |
| * |
| * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars |
| * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v |
| * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on |
| * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as |
| * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is |
| * almost always invertible, in which case we have \f$ A = V D V^{-1} |
| * \f$. This is called the eigendecomposition. |
| * |
| * The main function in this class is compute(), which computes the |
| * eigenvalues and eigenvectors of a given function. The |
| * documentation for that function contains an example showing the |
| * main features of the class. |
| * |
| * \sa class EigenSolver, class SelfAdjointEigenSolver |
| */ |
| template<typename _MatrixType> class ComplexEigenSolver |
| { |
| public: |
| |
| /** \brief Synonym for the template parameter \p _MatrixType. */ |
| typedef _MatrixType MatrixType; |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| Options = MatrixType::Options, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| |
| /** \brief Scalar type for matrices of type #MatrixType. */ |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef typename MatrixType::Index Index; |
| |
| /** \brief Complex scalar type for #MatrixType. |
| * |
| * This is \c std::complex<Scalar> if #Scalar is real (e.g., |
| * \c float or \c double) and just \c Scalar if #Scalar is |
| * complex. |
| */ |
| typedef std::complex<RealScalar> ComplexScalar; |
| |
| /** \brief Type for vector of eigenvalues as returned by eigenvalues(). |
| * |
| * This is a column vector with entries of type #ComplexScalar. |
| * The length of the vector is the size of #MatrixType. |
| */ |
| typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType; |
| |
| /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). |
| * |
| * This is a square matrix with entries of type #ComplexScalar. |
| * The size is the same as the size of #MatrixType. |
| */ |
| typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType; |
| |
| /** \brief Default constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via compute(). |
| */ |
| ComplexEigenSolver() |
| : m_eivec(), |
| m_eivalues(), |
| m_schur(), |
| m_isInitialized(false), |
| m_eigenvectorsOk(false), |
| m_matX() |
| {} |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem \a size. |
| * \sa ComplexEigenSolver() |
| */ |
| ComplexEigenSolver(Index size) |
| : m_eivec(size, size), |
| m_eivalues(size), |
| m_schur(size), |
| m_isInitialized(false), |
| m_eigenvectorsOk(false), |
| m_matX(size, size) |
| {} |
| |
| /** \brief Constructor; computes eigendecomposition of given matrix. |
| * |
| * \param[in] matrix Square matrix whose eigendecomposition is to be computed. |
| * \param[in] computeEigenvectors If true, both the eigenvectors and the |
| * eigenvalues are computed; if false, only the eigenvalues are |
| * computed. |
| * |
| * This constructor calls compute() to compute the eigendecomposition. |
| */ |
| ComplexEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true) |
| : m_eivec(matrix.rows(),matrix.cols()), |
| m_eivalues(matrix.cols()), |
| m_schur(matrix.rows()), |
| m_isInitialized(false), |
| m_eigenvectorsOk(false), |
| m_matX(matrix.rows(),matrix.cols()) |
| { |
| compute(matrix, computeEigenvectors); |
| } |
| |
| /** \brief Returns the eigenvectors of given matrix. |
| * |
| * \returns A const reference to the matrix whose columns are the eigenvectors. |
| * |
| * \pre Either the constructor |
| * ComplexEigenSolver(const MatrixType& matrix, bool) or the member |
| * function compute(const MatrixType& matrix, bool) has been called before |
| * to compute the eigendecomposition of a matrix, and |
| * \p computeEigenvectors was set to true (the default). |
| * |
| * This function returns a matrix whose columns are the eigenvectors. Column |
| * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k |
| * \f$ as returned by eigenvalues(). The eigenvectors are normalized to |
| * have (Euclidean) norm equal to one. The matrix returned by this |
| * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D |
| * V^{-1} \f$, if it exists. |
| * |
| * Example: \include ComplexEigenSolver_eigenvectors.cpp |
| * Output: \verbinclude ComplexEigenSolver_eigenvectors.out |
| */ |
| const EigenvectorType& eigenvectors() const |
| { |
| eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
| eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); |
| return m_eivec; |
| } |
| |
| /** \brief Returns the eigenvalues of given matrix. |
| * |
| * \returns A const reference to the column vector containing the eigenvalues. |
| * |
| * \pre Either the constructor |
| * ComplexEigenSolver(const MatrixType& matrix, bool) or the member |
| * function compute(const MatrixType& matrix, bool) has been called before |
| * to compute the eigendecomposition of a matrix. |
| * |
| * This function returns a column vector containing the |
| * eigenvalues. Eigenvalues are repeated according to their |
| * algebraic multiplicity, so there are as many eigenvalues as |
| * rows in the matrix. The eigenvalues are not sorted in any particular |
| * order. |
| * |
| * Example: \include ComplexEigenSolver_eigenvalues.cpp |
| * Output: \verbinclude ComplexEigenSolver_eigenvalues.out |
| */ |
| const EigenvalueType& eigenvalues() const |
| { |
| eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
| return m_eivalues; |
| } |
| |
| /** \brief Computes eigendecomposition of given matrix. |
| * |
| * \param[in] matrix Square matrix whose eigendecomposition is to be computed. |
| * \param[in] computeEigenvectors If true, both the eigenvectors and the |
| * eigenvalues are computed; if false, only the eigenvalues are |
| * computed. |
| * \returns Reference to \c *this |
| * |
| * This function computes the eigenvalues of the complex matrix \p matrix. |
| * The eigenvalues() function can be used to retrieve them. If |
| * \p computeEigenvectors is true, then the eigenvectors are also computed |
| * and can be retrieved by calling eigenvectors(). |
| * |
| * The matrix is first reduced to Schur form using the |
| * ComplexSchur class. The Schur decomposition is then used to |
| * compute the eigenvalues and eigenvectors. |
| * |
| * The cost of the computation is dominated by the cost of the |
| * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$ |
| * is the size of the matrix. |
| * |
| * Example: \include ComplexEigenSolver_compute.cpp |
| * Output: \verbinclude ComplexEigenSolver_compute.out |
| */ |
| ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true); |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was succesful, \c NoConvergence otherwise. |
| */ |
| ComputationInfo info() const |
| { |
| eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
| return m_schur.info(); |
| } |
| |
| protected: |
| EigenvectorType m_eivec; |
| EigenvalueType m_eivalues; |
| ComplexSchur<MatrixType> m_schur; |
| bool m_isInitialized; |
| bool m_eigenvectorsOk; |
| EigenvectorType m_matX; |
| |
| private: |
| void doComputeEigenvectors(RealScalar matrixnorm); |
| void sortEigenvalues(bool computeEigenvectors); |
| }; |
| |
| |
| template<typename MatrixType> |
| ComplexEigenSolver<MatrixType>& ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors) |
| { |
| // this code is inspired from Jampack |
| assert(matrix.cols() == matrix.rows()); |
| |
| // Do a complex Schur decomposition, A = U T U^* |
| // The eigenvalues are on the diagonal of T. |
| m_schur.compute(matrix, computeEigenvectors); |
| |
| if(m_schur.info() == Success) |
| { |
| m_eivalues = m_schur.matrixT().diagonal(); |
| if(computeEigenvectors) |
| doComputeEigenvectors(matrix.norm()); |
| sortEigenvalues(computeEigenvectors); |
| } |
| |
| m_isInitialized = true; |
| m_eigenvectorsOk = computeEigenvectors; |
| return *this; |
| } |
| |
| |
| template<typename MatrixType> |
| void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(RealScalar matrixnorm) |
| { |
| const Index n = m_eivalues.size(); |
| |
| // Compute X such that T = X D X^(-1), where D is the diagonal of T. |
| // The matrix X is unit triangular. |
| m_matX = EigenvectorType::Zero(n, n); |
| for(Index k=n-1 ; k>=0 ; k--) |
| { |
| m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0); |
| // Compute X(i,k) using the (i,k) entry of the equation X T = D X |
| for(Index i=k-1 ; i>=0 ; i--) |
| { |
| m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k); |
| if(k-i-1>0) |
| m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value(); |
| ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k); |
| if(z==ComplexScalar(0)) |
| { |
| // If the i-th and k-th eigenvalue are equal, then z equals 0. |
| // Use a small value instead, to prevent division by zero. |
| internal::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm; |
| } |
| m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z; |
| } |
| } |
| |
| // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1) |
| m_eivec.noalias() = m_schur.matrixU() * m_matX; |
| // .. and normalize the eigenvectors |
| for(Index k=0 ; k<n ; k++) |
| { |
| m_eivec.col(k).normalize(); |
| } |
| } |
| |
| |
| template<typename MatrixType> |
| void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors) |
| { |
| const Index n = m_eivalues.size(); |
| for (Index i=0; i<n; i++) |
| { |
| Index k; |
| m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k); |
| if (k != 0) |
| { |
| k += i; |
| std::swap(m_eivalues[k],m_eivalues[i]); |
| if(computeEigenvectors) |
| m_eivec.col(i).swap(m_eivec.col(k)); |
| } |
| } |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_COMPLEX_EIGEN_SOLVER_H |