| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_ALIGNEDBOX_H |
| #define EIGEN_ALIGNEDBOX_H |
| |
| namespace Eigen { |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * |
| * \class AlignedBox |
| * |
| * \brief An axis aligned box |
| * |
| * \param _Scalar the type of the scalar coefficients |
| * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. |
| * |
| * This class represents an axis aligned box as a pair of the minimal and maximal corners. |
| */ |
| template <typename _Scalar, int _AmbientDim> |
| class AlignedBox |
| { |
| public: |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim) |
| enum { AmbientDimAtCompileTime = _AmbientDim }; |
| typedef _Scalar Scalar; |
| typedef NumTraits<Scalar> ScalarTraits; |
| typedef DenseIndex Index; |
| typedef typename ScalarTraits::Real RealScalar; |
| typedef typename ScalarTraits::NonInteger NonInteger; |
| typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; |
| |
| /** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */ |
| enum CornerType |
| { |
| /** 1D names */ |
| Min=0, Max=1, |
| |
| /** Added names for 2D */ |
| BottomLeft=0, BottomRight=1, |
| TopLeft=2, TopRight=3, |
| |
| /** Added names for 3D */ |
| BottomLeftFloor=0, BottomRightFloor=1, |
| TopLeftFloor=2, TopRightFloor=3, |
| BottomLeftCeil=4, BottomRightCeil=5, |
| TopLeftCeil=6, TopRightCeil=7 |
| }; |
| |
| |
| /** Default constructor initializing a null box. */ |
| inline explicit AlignedBox() |
| { if (AmbientDimAtCompileTime!=Dynamic) setEmpty(); } |
| |
| /** Constructs a null box with \a _dim the dimension of the ambient space. */ |
| inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim) |
| { setEmpty(); } |
| |
| /** Constructs a box with extremities \a _min and \a _max. */ |
| template<typename OtherVectorType1, typename OtherVectorType2> |
| inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {} |
| |
| /** Constructs a box containing a single point \a p. */ |
| template<typename Derived> |
| inline explicit AlignedBox(const MatrixBase<Derived>& a_p) |
| { |
| const typename internal::nested<Derived,2>::type p(a_p.derived()); |
| m_min = p; |
| m_max = p; |
| } |
| |
| ~AlignedBox() {} |
| |
| /** \returns the dimension in which the box holds */ |
| inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : Index(AmbientDimAtCompileTime); } |
| |
| /** \deprecated use isEmpty */ |
| inline bool isNull() const { return isEmpty(); } |
| |
| /** \deprecated use setEmpty */ |
| inline void setNull() { setEmpty(); } |
| |
| /** \returns true if the box is empty. */ |
| inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); } |
| |
| /** Makes \c *this an empty box. */ |
| inline void setEmpty() |
| { |
| m_min.setConstant( ScalarTraits::highest() ); |
| m_max.setConstant( ScalarTraits::lowest() ); |
| } |
| |
| /** \returns the minimal corner */ |
| inline const VectorType& (min)() const { return m_min; } |
| /** \returns a non const reference to the minimal corner */ |
| inline VectorType& (min)() { return m_min; } |
| /** \returns the maximal corner */ |
| inline const VectorType& (max)() const { return m_max; } |
| /** \returns a non const reference to the maximal corner */ |
| inline VectorType& (max)() { return m_max; } |
| |
| /** \returns the center of the box */ |
| inline const CwiseUnaryOp<internal::scalar_quotient1_op<Scalar>, |
| const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const VectorType, const VectorType> > |
| center() const |
| { return (m_min+m_max)/2; } |
| |
| /** \returns the lengths of the sides of the bounding box. |
| * Note that this function does not get the same |
| * result for integral or floating scalar types: see |
| */ |
| inline const CwiseBinaryOp< internal::scalar_difference_op<Scalar>, const VectorType, const VectorType> sizes() const |
| { return m_max - m_min; } |
| |
| /** \returns the volume of the bounding box */ |
| inline Scalar volume() const |
| { return sizes().prod(); } |
| |
| /** \returns an expression for the bounding box diagonal vector |
| * if the length of the diagonal is needed: diagonal().norm() |
| * will provide it. |
| */ |
| inline CwiseBinaryOp< internal::scalar_difference_op<Scalar>, const VectorType, const VectorType> diagonal() const |
| { return sizes(); } |
| |
| /** \returns the vertex of the bounding box at the corner defined by |
| * the corner-id corner. It works only for a 1D, 2D or 3D bounding box. |
| * For 1D bounding boxes corners are named by 2 enum constants: |
| * BottomLeft and BottomRight. |
| * For 2D bounding boxes, corners are named by 4 enum constants: |
| * BottomLeft, BottomRight, TopLeft, TopRight. |
| * For 3D bounding boxes, the following names are added: |
| * BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil. |
| */ |
| inline VectorType corner(CornerType corner) const |
| { |
| EIGEN_STATIC_ASSERT(_AmbientDim <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE); |
| |
| VectorType res; |
| |
| Index mult = 1; |
| for(Index d=0; d<dim(); ++d) |
| { |
| if( mult & corner ) res[d] = m_max[d]; |
| else res[d] = m_min[d]; |
| mult *= 2; |
| } |
| return res; |
| } |
| |
| /** \returns a random point inside the bounding box sampled with |
| * a uniform distribution */ |
| inline VectorType sample() const |
| { |
| VectorType r; |
| for(Index d=0; d<dim(); ++d) |
| { |
| if(!ScalarTraits::IsInteger) |
| { |
| r[d] = m_min[d] + (m_max[d]-m_min[d]) |
| * internal::random<Scalar>(Scalar(0), Scalar(1)); |
| } |
| else |
| r[d] = internal::random(m_min[d], m_max[d]); |
| } |
| return r; |
| } |
| |
| /** \returns true if the point \a p is inside the box \c *this. */ |
| template<typename Derived> |
| inline bool contains(const MatrixBase<Derived>& a_p) const |
| { |
| typename internal::nested<Derived,2>::type p(a_p.derived()); |
| return (m_min.array()<=p.array()).all() && (p.array()<=m_max.array()).all(); |
| } |
| |
| /** \returns true if the box \a b is entirely inside the box \c *this. */ |
| inline bool contains(const AlignedBox& b) const |
| { return (m_min.array()<=(b.min)().array()).all() && ((b.max)().array()<=m_max.array()).all(); } |
| |
| /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */ |
| template<typename Derived> |
| inline AlignedBox& extend(const MatrixBase<Derived>& a_p) |
| { |
| typename internal::nested<Derived,2>::type p(a_p.derived()); |
| m_min = m_min.cwiseMin(p); |
| m_max = m_max.cwiseMax(p); |
| return *this; |
| } |
| |
| /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */ |
| inline AlignedBox& extend(const AlignedBox& b) |
| { |
| m_min = m_min.cwiseMin(b.m_min); |
| m_max = m_max.cwiseMax(b.m_max); |
| return *this; |
| } |
| |
| /** Clamps \c *this by the box \a b and returns a reference to \c *this. */ |
| inline AlignedBox& clamp(const AlignedBox& b) |
| { |
| m_min = m_min.cwiseMax(b.m_min); |
| m_max = m_max.cwiseMin(b.m_max); |
| return *this; |
| } |
| |
| /** Returns an AlignedBox that is the intersection of \a b and \c *this */ |
| inline AlignedBox intersection(const AlignedBox& b) const |
| {return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); } |
| |
| /** Returns an AlignedBox that is the union of \a b and \c *this */ |
| inline AlignedBox merged(const AlignedBox& b) const |
| { return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); } |
| |
| /** Translate \c *this by the vector \a t and returns a reference to \c *this. */ |
| template<typename Derived> |
| inline AlignedBox& translate(const MatrixBase<Derived>& a_t) |
| { |
| const typename internal::nested<Derived,2>::type t(a_t.derived()); |
| m_min += t; |
| m_max += t; |
| return *this; |
| } |
| |
| /** \returns the squared distance between the point \a p and the box \c *this, |
| * and zero if \a p is inside the box. |
| * \sa exteriorDistance() |
| */ |
| template<typename Derived> |
| inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& a_p) const; |
| |
| /** \returns the squared distance between the boxes \a b and \c *this, |
| * and zero if the boxes intersect. |
| * \sa exteriorDistance() |
| */ |
| inline Scalar squaredExteriorDistance(const AlignedBox& b) const; |
| |
| /** \returns the distance between the point \a p and the box \c *this, |
| * and zero if \a p is inside the box. |
| * \sa squaredExteriorDistance() |
| */ |
| template<typename Derived> |
| inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const |
| { return internal::sqrt(NonInteger(squaredExteriorDistance(p))); } |
| |
| /** \returns the distance between the boxes \a b and \c *this, |
| * and zero if the boxes intersect. |
| * \sa squaredExteriorDistance() |
| */ |
| inline NonInteger exteriorDistance(const AlignedBox& b) const |
| { return internal::sqrt(NonInteger(squaredExteriorDistance(b))); } |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template<typename NewScalarType> |
| inline typename internal::cast_return_type<AlignedBox, |
| AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const |
| { |
| return typename internal::cast_return_type<AlignedBox, |
| AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this); |
| } |
| |
| /** Copy constructor with scalar type conversion */ |
| template<typename OtherScalarType> |
| inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other) |
| { |
| m_min = (other.min)().template cast<Scalar>(); |
| m_max = (other.max)().template cast<Scalar>(); |
| } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| bool isApprox(const AlignedBox& other, RealScalar prec = ScalarTraits::dummy_precision()) const |
| { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); } |
| |
| protected: |
| |
| VectorType m_min, m_max; |
| }; |
| |
| |
| |
| template<typename Scalar,int AmbientDim> |
| template<typename Derived> |
| inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const MatrixBase<Derived>& a_p) const |
| { |
| const typename internal::nested<Derived,2*AmbientDim>::type p(a_p.derived()); |
| Scalar dist2(0); |
| Scalar aux; |
| for (Index k=0; k<dim(); ++k) |
| { |
| if( m_min[k] > p[k] ) |
| { |
| aux = m_min[k] - p[k]; |
| dist2 += aux*aux; |
| } |
| else if( p[k] > m_max[k] ) |
| { |
| aux = p[k] - m_max[k]; |
| dist2 += aux*aux; |
| } |
| } |
| return dist2; |
| } |
| |
| template<typename Scalar,int AmbientDim> |
| inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const AlignedBox& b) const |
| { |
| Scalar dist2(0); |
| Scalar aux; |
| for (Index k=0; k<dim(); ++k) |
| { |
| if( m_min[k] > b.m_max[k] ) |
| { |
| aux = m_min[k] - b.m_max[k]; |
| dist2 += aux*aux; |
| } |
| else if( b.m_min[k] > m_max[k] ) |
| { |
| aux = b.m_min[k] - m_max[k]; |
| dist2 += aux*aux; |
| } |
| } |
| return dist2; |
| } |
| |
| /** \defgroup alignedboxtypedefs Global aligned box typedefs |
| * |
| * \ingroup Geometry_Module |
| * |
| * Eigen defines several typedef shortcuts for most common aligned box types. |
| * |
| * The general patterns are the following: |
| * |
| * \c AlignedBoxSizeType where \c Size can be \c 1, \c 2,\c 3,\c 4 for fixed size boxes or \c X for dynamic size, |
| * and where \c Type can be \c i for integer, \c f for float, \c d for double. |
| * |
| * For example, \c AlignedBox3d is a fixed-size 3x3 aligned box type of doubles, and \c AlignedBoxXf is a dynamic-size aligned box of floats. |
| * |
| * \sa class AlignedBox |
| */ |
| |
| #define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ |
| /** \ingroup alignedboxtypedefs */ \ |
| typedef AlignedBox<Type, Size> AlignedBox##SizeSuffix##TypeSuffix; |
| |
| #define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 1, 1) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) |
| |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) |
| |
| #undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES |
| #undef EIGEN_MAKE_TYPEDEFS |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_ALIGNEDBOX_H |