blob: 8d77a3d23a26c02da48f18d65d7e8d1a78ebce03 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRANSLATION_H
#define EIGEN_TRANSLATION_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Translation
*
* \brief Represents a translation transformation
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
* \param _Dim the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a translation transformation,
* but rather to make easier the constructions and updates of Transform objects.
*
* \sa class Scaling, class Transform
*/
template<typename _Scalar, int _Dim>
class Translation
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
/** dimension of the space */
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
/** corresponding vector type */
typedef Matrix<Scalar,Dim,1> VectorType;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
/** corresponding affine transformation type */
typedef Transform<Scalar,Dim,Affine> AffineTransformType;
/** corresponding isometric transformation type */
typedef Transform<Scalar,Dim,Isometry> IsometryTransformType;
protected:
VectorType m_coeffs;
public:
/** Default constructor without initialization. */
Translation() {}
/** */
inline Translation(const Scalar& sx, const Scalar& sy)
{
eigen_assert(Dim==2);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
}
/** */
inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
{
eigen_assert(Dim==3);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
m_coeffs.z() = sz;
}
/** Constructs and initialize the translation transformation from a vector of translation coefficients */
explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
/** \brief Retruns the x-translation by value. **/
inline Scalar x() const { return m_coeffs.x(); }
/** \brief Retruns the y-translation by value. **/
inline Scalar y() const { return m_coeffs.y(); }
/** \brief Retruns the z-translation by value. **/
inline Scalar z() const { return m_coeffs.z(); }
/** \brief Retruns the x-translation as a reference. **/
inline Scalar& x() { return m_coeffs.x(); }
/** \brief Retruns the y-translation as a reference. **/
inline Scalar& y() { return m_coeffs.y(); }
/** \brief Retruns the z-translation as a reference. **/
inline Scalar& z() { return m_coeffs.z(); }
const VectorType& vector() const { return m_coeffs; }
VectorType& vector() { return m_coeffs; }
const VectorType& translation() const { return m_coeffs; }
VectorType& translation() { return m_coeffs; }
/** Concatenates two translation */
inline Translation operator* (const Translation& other) const
{ return Translation(m_coeffs + other.m_coeffs); }
/** Concatenates a translation and a uniform scaling */
inline AffineTransformType operator* (const UniformScaling<Scalar>& other) const;
/** Concatenates a translation and a linear transformation */
template<typename OtherDerived>
inline AffineTransformType operator* (const EigenBase<OtherDerived>& linear) const;
/** Concatenates a translation and a rotation */
template<typename Derived>
inline IsometryTransformType operator*(const RotationBase<Derived,Dim>& r) const
{ return *this * IsometryTransformType(r); }
/** \returns the concatenation of a linear transformation \a l with the translation \a t */
// its a nightmare to define a templated friend function outside its declaration
template<typename OtherDerived> friend
inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear, const Translation& t)
{
AffineTransformType res;
res.matrix().setZero();
res.linear() = linear.derived();
res.translation() = linear.derived() * t.m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim,Dim) = Scalar(1);
return res;
}
/** Concatenates a translation and a transformation */
template<int Mode, int Options>
inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim,Mode,Options>& t) const
{
Transform<Scalar,Dim,Mode> res = t;
res.pretranslate(m_coeffs);
return res;
}
/** Applies translation to vector */
inline VectorType operator* (const VectorType& other) const
{ return m_coeffs + other; }
/** \returns the inverse translation (opposite) */
Translation inverse() const { return Translation(-m_coeffs); }
Translation& operator=(const Translation& other)
{
m_coeffs = other.m_coeffs;
return *this;
}
static const Translation Identity() { return Translation(VectorType::Zero()); }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
{ return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
{ m_coeffs = other.vector().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Translation& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
};
/** \addtogroup Geometry_Module */
//@{
typedef Translation<float, 2> Translation2f;
typedef Translation<double,2> Translation2d;
typedef Translation<float, 3> Translation3f;
typedef Translation<double,3> Translation3d;
//@}
template<typename Scalar, int Dim>
inline typename Translation<Scalar,Dim>::AffineTransformType
Translation<Scalar,Dim>::operator* (const UniformScaling<Scalar>& other) const
{
AffineTransformType res;
res.matrix().setZero();
res.linear().diagonal().fill(other.factor());
res.translation() = m_coeffs;
res(Dim,Dim) = Scalar(1);
return res;
}
template<typename Scalar, int Dim>
template<typename OtherDerived>
inline typename Translation<Scalar,Dim>::AffineTransformType
Translation<Scalar,Dim>::operator* (const EigenBase<OtherDerived>& linear) const
{
AffineTransformType res;
res.matrix().setZero();
res.linear() = linear.derived();
res.translation() = m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim,Dim) = Scalar(1);
return res;
}
} // end namespace Eigen
#endif // EIGEN_TRANSLATION_H