| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2001 Intel Corporation |
| // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| // The SSE code for the 4x4 float and double matrix inverse in this file |
| // comes from the following Intel's library: |
| // http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/ |
| // |
| // Here is the respective copyright and license statement: |
| // |
| // Copyright (c) 2001 Intel Corporation. |
| // |
| // Permition is granted to use, copy, distribute and prepare derivative works |
| // of this library for any purpose and without fee, provided, that the above |
| // copyright notice and this statement appear in all copies. |
| // Intel makes no representations about the suitability of this software for |
| // any purpose, and specifically disclaims all warranties. |
| // See LEGAL.TXT for all the legal information. |
| |
| #ifndef EIGEN_INVERSE_SSE_H |
| #define EIGEN_INVERSE_SSE_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template<typename MatrixType, typename ResultType> |
| struct compute_inverse_size4<Architecture::SSE, float, MatrixType, ResultType> |
| { |
| enum { |
| MatrixAlignment = bool(MatrixType::Flags&AlignedBit), |
| ResultAlignment = bool(ResultType::Flags&AlignedBit), |
| StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit) |
| }; |
| |
| static void run(const MatrixType& matrix, ResultType& result) |
| { |
| EIGEN_ALIGN16 const unsigned int _Sign_PNNP[4] = { 0x00000000, 0x80000000, 0x80000000, 0x00000000 }; |
| |
| // Load the full matrix into registers |
| __m128 _L1 = matrix.template packet<MatrixAlignment>( 0); |
| __m128 _L2 = matrix.template packet<MatrixAlignment>( 4); |
| __m128 _L3 = matrix.template packet<MatrixAlignment>( 8); |
| __m128 _L4 = matrix.template packet<MatrixAlignment>(12); |
| |
| // The inverse is calculated using "Divide and Conquer" technique. The |
| // original matrix is divide into four 2x2 sub-matrices. Since each |
| // register holds four matrix element, the smaller matrices are |
| // represented as a registers. Hence we get a better locality of the |
| // calculations. |
| |
| __m128 A, B, C, D; // the four sub-matrices |
| if(!StorageOrdersMatch) |
| { |
| A = _mm_unpacklo_ps(_L1, _L2); |
| B = _mm_unpacklo_ps(_L3, _L4); |
| C = _mm_unpackhi_ps(_L1, _L2); |
| D = _mm_unpackhi_ps(_L3, _L4); |
| } |
| else |
| { |
| A = _mm_movelh_ps(_L1, _L2); |
| B = _mm_movehl_ps(_L2, _L1); |
| C = _mm_movelh_ps(_L3, _L4); |
| D = _mm_movehl_ps(_L4, _L3); |
| } |
| |
| __m128 iA, iB, iC, iD, // partial inverse of the sub-matrices |
| DC, AB; |
| __m128 dA, dB, dC, dD; // determinant of the sub-matrices |
| __m128 det, d, d1, d2; |
| __m128 rd; // reciprocal of the determinant |
| |
| // AB = A# * B |
| AB = _mm_mul_ps(_mm_shuffle_ps(A,A,0x0F), B); |
| AB = _mm_sub_ps(AB,_mm_mul_ps(_mm_shuffle_ps(A,A,0xA5), _mm_shuffle_ps(B,B,0x4E))); |
| // DC = D# * C |
| DC = _mm_mul_ps(_mm_shuffle_ps(D,D,0x0F), C); |
| DC = _mm_sub_ps(DC,_mm_mul_ps(_mm_shuffle_ps(D,D,0xA5), _mm_shuffle_ps(C,C,0x4E))); |
| |
| // dA = |A| |
| dA = _mm_mul_ps(_mm_shuffle_ps(A, A, 0x5F),A); |
| dA = _mm_sub_ss(dA, _mm_movehl_ps(dA,dA)); |
| // dB = |B| |
| dB = _mm_mul_ps(_mm_shuffle_ps(B, B, 0x5F),B); |
| dB = _mm_sub_ss(dB, _mm_movehl_ps(dB,dB)); |
| |
| // dC = |C| |
| dC = _mm_mul_ps(_mm_shuffle_ps(C, C, 0x5F),C); |
| dC = _mm_sub_ss(dC, _mm_movehl_ps(dC,dC)); |
| // dD = |D| |
| dD = _mm_mul_ps(_mm_shuffle_ps(D, D, 0x5F),D); |
| dD = _mm_sub_ss(dD, _mm_movehl_ps(dD,dD)); |
| |
| // d = trace(AB*DC) = trace(A#*B*D#*C) |
| d = _mm_mul_ps(_mm_shuffle_ps(DC,DC,0xD8),AB); |
| |
| // iD = C*A#*B |
| iD = _mm_mul_ps(_mm_shuffle_ps(C,C,0xA0), _mm_movelh_ps(AB,AB)); |
| iD = _mm_add_ps(iD,_mm_mul_ps(_mm_shuffle_ps(C,C,0xF5), _mm_movehl_ps(AB,AB))); |
| // iA = B*D#*C |
| iA = _mm_mul_ps(_mm_shuffle_ps(B,B,0xA0), _mm_movelh_ps(DC,DC)); |
| iA = _mm_add_ps(iA,_mm_mul_ps(_mm_shuffle_ps(B,B,0xF5), _mm_movehl_ps(DC,DC))); |
| |
| // d = trace(AB*DC) = trace(A#*B*D#*C) [continue] |
| d = _mm_add_ps(d, _mm_movehl_ps(d, d)); |
| d = _mm_add_ss(d, _mm_shuffle_ps(d, d, 1)); |
| d1 = _mm_mul_ss(dA,dD); |
| d2 = _mm_mul_ss(dB,dC); |
| |
| // iD = D*|A| - C*A#*B |
| iD = _mm_sub_ps(_mm_mul_ps(D,_mm_shuffle_ps(dA,dA,0)), iD); |
| |
| // iA = A*|D| - B*D#*C; |
| iA = _mm_sub_ps(_mm_mul_ps(A,_mm_shuffle_ps(dD,dD,0)), iA); |
| |
| // det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C) |
| det = _mm_sub_ss(_mm_add_ss(d1,d2),d); |
| rd = _mm_div_ss(_mm_set_ss(1.0f), det); |
| |
| // #ifdef ZERO_SINGULAR |
| // rd = _mm_and_ps(_mm_cmpneq_ss(det,_mm_setzero_ps()), rd); |
| // #endif |
| |
| // iB = D * (A#B)# = D*B#*A |
| iB = _mm_mul_ps(D, _mm_shuffle_ps(AB,AB,0x33)); |
| iB = _mm_sub_ps(iB, _mm_mul_ps(_mm_shuffle_ps(D,D,0xB1), _mm_shuffle_ps(AB,AB,0x66))); |
| // iC = A * (D#C)# = A*C#*D |
| iC = _mm_mul_ps(A, _mm_shuffle_ps(DC,DC,0x33)); |
| iC = _mm_sub_ps(iC, _mm_mul_ps(_mm_shuffle_ps(A,A,0xB1), _mm_shuffle_ps(DC,DC,0x66))); |
| |
| rd = _mm_shuffle_ps(rd,rd,0); |
| rd = _mm_xor_ps(rd, _mm_load_ps((float*)_Sign_PNNP)); |
| |
| // iB = C*|B| - D*B#*A |
| iB = _mm_sub_ps(_mm_mul_ps(C,_mm_shuffle_ps(dB,dB,0)), iB); |
| |
| // iC = B*|C| - A*C#*D; |
| iC = _mm_sub_ps(_mm_mul_ps(B,_mm_shuffle_ps(dC,dC,0)), iC); |
| |
| // iX = iX / det |
| iA = _mm_mul_ps(rd,iA); |
| iB = _mm_mul_ps(rd,iB); |
| iC = _mm_mul_ps(rd,iC); |
| iD = _mm_mul_ps(rd,iD); |
| |
| result.template writePacket<ResultAlignment>( 0, _mm_shuffle_ps(iA,iB,0x77)); |
| result.template writePacket<ResultAlignment>( 4, _mm_shuffle_ps(iA,iB,0x22)); |
| result.template writePacket<ResultAlignment>( 8, _mm_shuffle_ps(iC,iD,0x77)); |
| result.template writePacket<ResultAlignment>(12, _mm_shuffle_ps(iC,iD,0x22)); |
| } |
| |
| }; |
| |
| template<typename MatrixType, typename ResultType> |
| struct compute_inverse_size4<Architecture::SSE, double, MatrixType, ResultType> |
| { |
| enum { |
| MatrixAlignment = bool(MatrixType::Flags&AlignedBit), |
| ResultAlignment = bool(ResultType::Flags&AlignedBit), |
| StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit) |
| }; |
| static void run(const MatrixType& matrix, ResultType& result) |
| { |
| const __m128d _Sign_NP = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0)); |
| const __m128d _Sign_PN = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0)); |
| |
| // The inverse is calculated using "Divide and Conquer" technique. The |
| // original matrix is divide into four 2x2 sub-matrices. Since each |
| // register of the matrix holds two element, the smaller matrices are |
| // consisted of two registers. Hence we get a better locality of the |
| // calculations. |
| |
| // the four sub-matrices |
| __m128d A1, A2, B1, B2, C1, C2, D1, D2; |
| |
| if(StorageOrdersMatch) |
| { |
| A1 = matrix.template packet<MatrixAlignment>( 0); B1 = matrix.template packet<MatrixAlignment>( 2); |
| A2 = matrix.template packet<MatrixAlignment>( 4); B2 = matrix.template packet<MatrixAlignment>( 6); |
| C1 = matrix.template packet<MatrixAlignment>( 8); D1 = matrix.template packet<MatrixAlignment>(10); |
| C2 = matrix.template packet<MatrixAlignment>(12); D2 = matrix.template packet<MatrixAlignment>(14); |
| } |
| else |
| { |
| __m128d tmp; |
| A1 = matrix.template packet<MatrixAlignment>( 0); C1 = matrix.template packet<MatrixAlignment>( 2); |
| A2 = matrix.template packet<MatrixAlignment>( 4); C2 = matrix.template packet<MatrixAlignment>( 6); |
| tmp = A1; |
| A1 = _mm_unpacklo_pd(A1,A2); |
| A2 = _mm_unpackhi_pd(tmp,A2); |
| tmp = C1; |
| C1 = _mm_unpacklo_pd(C1,C2); |
| C2 = _mm_unpackhi_pd(tmp,C2); |
| |
| B1 = matrix.template packet<MatrixAlignment>( 8); D1 = matrix.template packet<MatrixAlignment>(10); |
| B2 = matrix.template packet<MatrixAlignment>(12); D2 = matrix.template packet<MatrixAlignment>(14); |
| tmp = B1; |
| B1 = _mm_unpacklo_pd(B1,B2); |
| B2 = _mm_unpackhi_pd(tmp,B2); |
| tmp = D1; |
| D1 = _mm_unpacklo_pd(D1,D2); |
| D2 = _mm_unpackhi_pd(tmp,D2); |
| } |
| |
| __m128d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2, // partial invese of the sub-matrices |
| DC1, DC2, AB1, AB2; |
| __m128d dA, dB, dC, dD; // determinant of the sub-matrices |
| __m128d det, d1, d2, rd; |
| |
| // dA = |A| |
| dA = _mm_shuffle_pd(A2, A2, 1); |
| dA = _mm_mul_pd(A1, dA); |
| dA = _mm_sub_sd(dA, _mm_shuffle_pd(dA,dA,3)); |
| // dB = |B| |
| dB = _mm_shuffle_pd(B2, B2, 1); |
| dB = _mm_mul_pd(B1, dB); |
| dB = _mm_sub_sd(dB, _mm_shuffle_pd(dB,dB,3)); |
| |
| // AB = A# * B |
| AB1 = _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,3)); |
| AB2 = _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,0)); |
| AB1 = _mm_sub_pd(AB1, _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,3))); |
| AB2 = _mm_sub_pd(AB2, _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,0))); |
| |
| // dC = |C| |
| dC = _mm_shuffle_pd(C2, C2, 1); |
| dC = _mm_mul_pd(C1, dC); |
| dC = _mm_sub_sd(dC, _mm_shuffle_pd(dC,dC,3)); |
| // dD = |D| |
| dD = _mm_shuffle_pd(D2, D2, 1); |
| dD = _mm_mul_pd(D1, dD); |
| dD = _mm_sub_sd(dD, _mm_shuffle_pd(dD,dD,3)); |
| |
| // DC = D# * C |
| DC1 = _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,3)); |
| DC2 = _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,0)); |
| DC1 = _mm_sub_pd(DC1, _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,3))); |
| DC2 = _mm_sub_pd(DC2, _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,0))); |
| |
| // rd = trace(AB*DC) = trace(A#*B*D#*C) |
| d1 = _mm_mul_pd(AB1, _mm_shuffle_pd(DC1, DC2, 0)); |
| d2 = _mm_mul_pd(AB2, _mm_shuffle_pd(DC1, DC2, 3)); |
| rd = _mm_add_pd(d1, d2); |
| rd = _mm_add_sd(rd, _mm_shuffle_pd(rd, rd,3)); |
| |
| // iD = C*A#*B |
| iD1 = _mm_mul_pd(AB1, _mm_shuffle_pd(C1,C1,0)); |
| iD2 = _mm_mul_pd(AB1, _mm_shuffle_pd(C2,C2,0)); |
| iD1 = _mm_add_pd(iD1, _mm_mul_pd(AB2, _mm_shuffle_pd(C1,C1,3))); |
| iD2 = _mm_add_pd(iD2, _mm_mul_pd(AB2, _mm_shuffle_pd(C2,C2,3))); |
| |
| // iA = B*D#*C |
| iA1 = _mm_mul_pd(DC1, _mm_shuffle_pd(B1,B1,0)); |
| iA2 = _mm_mul_pd(DC1, _mm_shuffle_pd(B2,B2,0)); |
| iA1 = _mm_add_pd(iA1, _mm_mul_pd(DC2, _mm_shuffle_pd(B1,B1,3))); |
| iA2 = _mm_add_pd(iA2, _mm_mul_pd(DC2, _mm_shuffle_pd(B2,B2,3))); |
| |
| // iD = D*|A| - C*A#*B |
| dA = _mm_shuffle_pd(dA,dA,0); |
| iD1 = _mm_sub_pd(_mm_mul_pd(D1, dA), iD1); |
| iD2 = _mm_sub_pd(_mm_mul_pd(D2, dA), iD2); |
| |
| // iA = A*|D| - B*D#*C; |
| dD = _mm_shuffle_pd(dD,dD,0); |
| iA1 = _mm_sub_pd(_mm_mul_pd(A1, dD), iA1); |
| iA2 = _mm_sub_pd(_mm_mul_pd(A2, dD), iA2); |
| |
| d1 = _mm_mul_sd(dA, dD); |
| d2 = _mm_mul_sd(dB, dC); |
| |
| // iB = D * (A#B)# = D*B#*A |
| iB1 = _mm_mul_pd(D1, _mm_shuffle_pd(AB2,AB1,1)); |
| iB2 = _mm_mul_pd(D2, _mm_shuffle_pd(AB2,AB1,1)); |
| iB1 = _mm_sub_pd(iB1, _mm_mul_pd(_mm_shuffle_pd(D1,D1,1), _mm_shuffle_pd(AB2,AB1,2))); |
| iB2 = _mm_sub_pd(iB2, _mm_mul_pd(_mm_shuffle_pd(D2,D2,1), _mm_shuffle_pd(AB2,AB1,2))); |
| |
| // det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C) |
| det = _mm_add_sd(d1, d2); |
| det = _mm_sub_sd(det, rd); |
| |
| // iC = A * (D#C)# = A*C#*D |
| iC1 = _mm_mul_pd(A1, _mm_shuffle_pd(DC2,DC1,1)); |
| iC2 = _mm_mul_pd(A2, _mm_shuffle_pd(DC2,DC1,1)); |
| iC1 = _mm_sub_pd(iC1, _mm_mul_pd(_mm_shuffle_pd(A1,A1,1), _mm_shuffle_pd(DC2,DC1,2))); |
| iC2 = _mm_sub_pd(iC2, _mm_mul_pd(_mm_shuffle_pd(A2,A2,1), _mm_shuffle_pd(DC2,DC1,2))); |
| |
| rd = _mm_div_sd(_mm_set_sd(1.0), det); |
| // #ifdef ZERO_SINGULAR |
| // rd = _mm_and_pd(_mm_cmpneq_sd(det,_mm_setzero_pd()), rd); |
| // #endif |
| rd = _mm_shuffle_pd(rd,rd,0); |
| |
| // iB = C*|B| - D*B#*A |
| dB = _mm_shuffle_pd(dB,dB,0); |
| iB1 = _mm_sub_pd(_mm_mul_pd(C1, dB), iB1); |
| iB2 = _mm_sub_pd(_mm_mul_pd(C2, dB), iB2); |
| |
| d1 = _mm_xor_pd(rd, _Sign_PN); |
| d2 = _mm_xor_pd(rd, _Sign_NP); |
| |
| // iC = B*|C| - A*C#*D; |
| dC = _mm_shuffle_pd(dC,dC,0); |
| iC1 = _mm_sub_pd(_mm_mul_pd(B1, dC), iC1); |
| iC2 = _mm_sub_pd(_mm_mul_pd(B2, dC), iC2); |
| |
| result.template writePacket<ResultAlignment>( 0, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1)); // iA# / det |
| result.template writePacket<ResultAlignment>( 4, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2)); |
| result.template writePacket<ResultAlignment>( 2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1)); // iB# / det |
| result.template writePacket<ResultAlignment>( 6, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2)); |
| result.template writePacket<ResultAlignment>( 8, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1)); // iC# / det |
| result.template writePacket<ResultAlignment>(12, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2)); |
| result.template writePacket<ResultAlignment>(10, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1)); // iD# / det |
| result.template writePacket<ResultAlignment>(14, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2)); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_INVERSE_SSE_H |