| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H |
| #define EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| |
| // perform a pseudo in-place sparse * sparse product assuming all matrices are col major |
| template<typename Lhs, typename Rhs, typename ResultType> |
| static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, const typename ResultType::RealScalar& tolerance) |
| { |
| // return sparse_sparse_product_with_pruning_impl2(lhs,rhs,res); |
| |
| typedef typename remove_all<Lhs>::type::Scalar Scalar; |
| typedef typename remove_all<Lhs>::type::Index Index; |
| |
| // make sure to call innerSize/outerSize since we fake the storage order. |
| Index rows = lhs.innerSize(); |
| Index cols = rhs.outerSize(); |
| //int size = lhs.outerSize(); |
| eigen_assert(lhs.outerSize() == rhs.innerSize()); |
| |
| // allocate a temporary buffer |
| AmbiVector<Scalar,Index> tempVector(rows); |
| |
| // estimate the number of non zero entries |
| // given a rhs column containing Y non zeros, we assume that the respective Y columns |
| // of the lhs differs in average of one non zeros, thus the number of non zeros for |
| // the product of a rhs column with the lhs is X+Y where X is the average number of non zero |
| // per column of the lhs. |
| // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs) |
| Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros(); |
| |
| // mimics a resizeByInnerOuter: |
| if(ResultType::IsRowMajor) |
| res.resize(cols, rows); |
| else |
| res.resize(rows, cols); |
| |
| res.reserve(estimated_nnz_prod); |
| double ratioColRes = double(estimated_nnz_prod)/double(lhs.rows()*rhs.cols()); |
| for (Index j=0; j<cols; ++j) |
| { |
| // FIXME: |
| //double ratioColRes = (double(rhs.innerVector(j).nonZeros()) + double(lhs.nonZeros())/double(lhs.cols()))/double(lhs.rows()); |
| // let's do a more accurate determination of the nnz ratio for the current column j of res |
| tempVector.init(ratioColRes); |
| tempVector.setZero(); |
| for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt) |
| { |
| // FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index()) |
| tempVector.restart(); |
| Scalar x = rhsIt.value(); |
| for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt) |
| { |
| tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x; |
| } |
| } |
| res.startVec(j); |
| for (typename AmbiVector<Scalar,Index>::Iterator it(tempVector,tolerance); it; ++it) |
| res.insertBackByOuterInner(j,it.index()) = it.value(); |
| } |
| res.finalize(); |
| } |
| |
| template<typename Lhs, typename Rhs, typename ResultType, |
| int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit, |
| int RhsStorageOrder = traits<Rhs>::Flags&RowMajorBit, |
| int ResStorageOrder = traits<ResultType>::Flags&RowMajorBit> |
| struct sparse_sparse_product_with_pruning_selector; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor> |
| { |
| typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar; |
| typedef typename ResultType::RealScalar RealScalar; |
| |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) |
| { |
| typename remove_all<ResultType>::type _res(res.rows(), res.cols()); |
| internal::sparse_sparse_product_with_pruning_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res, tolerance); |
| res.swap(_res); |
| } |
| }; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor> |
| { |
| typedef typename ResultType::RealScalar RealScalar; |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) |
| { |
| // we need a col-major matrix to hold the result |
| typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType; |
| SparseTemporaryType _res(res.rows(), res.cols()); |
| internal::sparse_sparse_product_with_pruning_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res, tolerance); |
| res = _res; |
| } |
| }; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor> |
| { |
| typedef typename ResultType::RealScalar RealScalar; |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) |
| { |
| // let's transpose the product to get a column x column product |
| typename remove_all<ResultType>::type _res(res.rows(), res.cols()); |
| internal::sparse_sparse_product_with_pruning_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res, tolerance); |
| res.swap(_res); |
| } |
| }; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor> |
| { |
| typedef typename ResultType::RealScalar RealScalar; |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) |
| { |
| typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix; |
| ColMajorMatrix colLhs(lhs); |
| ColMajorMatrix colRhs(rhs); |
| internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrix,ColMajorMatrix,ResultType>(colLhs, colRhs, res, tolerance); |
| |
| // let's transpose the product to get a column x column product |
| // typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType; |
| // SparseTemporaryType _res(res.cols(), res.rows()); |
| // sparse_sparse_product_with_pruning_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res); |
| // res = _res.transpose(); |
| } |
| }; |
| |
| // NOTE the 2 others cases (col row *) must never occur since they are caught |
| // by ProductReturnType which transforms it to (col col *) by evaluating rhs. |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H |