| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "common.h" |
| #include <Eigen/Eigenvalues> |
| |
| // computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges |
| EIGEN_LAPACK_FUNC(syev,(char *jobz, char *uplo, int* n, Scalar* a, int *lda, Scalar* w, Scalar* /*work*/, int* lwork, int *info)) |
| { |
| // TODO exploit the work buffer |
| bool query_size = *lwork==-1; |
| |
| *info = 0; |
| if(*jobz!='N' && *jobz!='V') *info = -1; |
| else if(UPLO(*uplo)==INVALID) *info = -2; |
| else if(*n<0) *info = -3; |
| else if(*lda<std::max(1,*n)) *info = -5; |
| else if((!query_size) && *lwork<std::max(1,3**n-1)) *info = -8; |
| |
| // if(*info==0) |
| // { |
| // int nb = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 ) |
| // LWKOPT = MAX( 1, ( NB+2 )*N ) |
| // WORK( 1 ) = LWKOPT |
| // * |
| // IF( LWORK.LT.MAX( 1, 3*N-1 ) .AND. .NOT.LQUERY ) |
| // $ INFO = -8 |
| // END IF |
| // * |
| // IF( INFO.NE.0 ) THEN |
| // CALL XERBLA( 'SSYEV ', -INFO ) |
| // RETURN |
| // ELSE IF( LQUERY ) THEN |
| // RETURN |
| // END IF |
| |
| if(*info!=0) |
| { |
| int e = -*info; |
| return xerbla_(SCALAR_SUFFIX_UP"SYEV ", &e, 6); |
| } |
| |
| if(query_size) |
| { |
| *lwork = 0; |
| return 0; |
| } |
| |
| if(*n==0) |
| return 0; |
| |
| PlainMatrixType mat(*n,*n); |
| if(UPLO(*uplo)==UP) mat = matrix(a,*n,*n,*lda).adjoint(); |
| else mat = matrix(a,*n,*n,*lda); |
| |
| bool computeVectors = *jobz=='V' || *jobz=='v'; |
| SelfAdjointEigenSolver<PlainMatrixType> eig(mat,computeVectors?ComputeEigenvectors:EigenvaluesOnly); |
| |
| if(eig.info()==NoConvergence) |
| { |
| vector(w,*n).setZero(); |
| if(computeVectors) |
| matrix(a,*n,*n,*lda).setIdentity(); |
| //*info = 1; |
| return 0; |
| } |
| |
| vector(w,*n) = eig.eigenvalues(); |
| if(computeVectors) |
| matrix(a,*n,*n,*lda) = eig.eigenvectors(); |
| |
| return 0; |
| } |