| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #define EIGEN_NO_ASSERTION_CHECKING |
| #include "main.h" |
| #include <Eigen/Cholesky> |
| #include <Eigen/LU> |
| |
| #ifdef HAS_GSL |
| #include "gsl_helper.h" |
| #endif |
| |
| template<typename MatrixType> void cholesky(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| LLT.h LDLT.h |
| */ |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| MatrixType a0 = MatrixType::Random(rows,cols); |
| VectorType vecB = VectorType::Random(rows), vecX(rows); |
| MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols); |
| SquareMatrixType symm = a0 * a0.adjoint(); |
| // let's make sure the matrix is not singular or near singular |
| MatrixType a1 = MatrixType::Random(rows,cols); |
| symm += a1 * a1.adjoint(); |
| |
| #ifdef HAS_GSL |
| if (ei_is_same_type<RealScalar,double>::ret) |
| { |
| typedef GslTraits<Scalar> Gsl; |
| typename Gsl::Matrix gMatA=0, gSymm=0; |
| typename Gsl::Vector gVecB=0, gVecX=0; |
| convert<MatrixType>(symm, gSymm); |
| convert<MatrixType>(symm, gMatA); |
| convert<VectorType>(vecB, gVecB); |
| convert<VectorType>(vecB, gVecX); |
| Gsl::cholesky(gMatA); |
| Gsl::cholesky_solve(gMatA, gVecB, gVecX); |
| VectorType vecX(rows), _vecX, _vecB; |
| convert(gVecX, _vecX); |
| symm.llt().solve(vecB, &vecX); |
| Gsl::prod(gSymm, gVecX, gVecB); |
| convert(gVecB, _vecB); |
| // test gsl itself ! |
| VERIFY_IS_APPROX(vecB, _vecB); |
| VERIFY_IS_APPROX(vecX, _vecX); |
| |
| Gsl::free(gMatA); |
| Gsl::free(gSymm); |
| Gsl::free(gVecB); |
| Gsl::free(gVecX); |
| } |
| #endif |
| |
| { |
| LDLT<SquareMatrixType> ldlt(symm); |
| VERIFY(ldlt.isPositiveDefinite()); |
| // in eigen3, LDLT is pivoting |
| //VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint()); |
| ldlt.solve(vecB, &vecX); |
| VERIFY_IS_APPROX(symm * vecX, vecB); |
| ldlt.solve(matB, &matX); |
| VERIFY_IS_APPROX(symm * matX, matB); |
| } |
| |
| { |
| LLT<SquareMatrixType> chol(symm); |
| VERIFY(chol.isPositiveDefinite()); |
| VERIFY_IS_APPROX(symm, chol.matrixL() * chol.matrixL().adjoint()); |
| chol.solve(vecB, &vecX); |
| VERIFY_IS_APPROX(symm * vecX, vecB); |
| chol.solve(matB, &matX); |
| VERIFY_IS_APPROX(symm * matX, matB); |
| } |
| |
| #if 0 // cholesky is not rank-revealing anyway |
| // test isPositiveDefinite on non definite matrix |
| if (rows>4) |
| { |
| SquareMatrixType symm = a0.block(0,0,rows,cols-4) * a0.block(0,0,rows,cols-4).adjoint(); |
| LLT<SquareMatrixType> chol(symm); |
| VERIFY(!chol.isPositiveDefinite()); |
| LDLT<SquareMatrixType> cholnosqrt(symm); |
| VERIFY(!cholnosqrt.isPositiveDefinite()); |
| } |
| #endif |
| } |
| |
| void test_eigen2_cholesky() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) ); |
| CALL_SUBTEST_2( cholesky(Matrix2d()) ); |
| CALL_SUBTEST_3( cholesky(Matrix3f()) ); |
| CALL_SUBTEST_4( cholesky(Matrix4d()) ); |
| CALL_SUBTEST_5( cholesky(MatrixXcd(7,7)) ); |
| CALL_SUBTEST_6( cholesky(MatrixXf(17,17)) ); |
| CALL_SUBTEST_7( cholesky(MatrixXd(33,33)) ); |
| } |
| } |