| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <Eigen/LU> |
| #include <algorithm> |
| |
| template<typename T> std::string type_name() { return "other"; } |
| template<> std::string type_name<float>() { return "float"; } |
| template<> std::string type_name<double>() { return "double"; } |
| template<> std::string type_name<int>() { return "int"; } |
| template<> std::string type_name<std::complex<float> >() { return "complex<float>"; } |
| template<> std::string type_name<std::complex<double> >() { return "complex<double>"; } |
| template<> std::string type_name<std::complex<int> >() { return "complex<int>"; } |
| |
| #define EIGEN_DEBUG_VAR(x) std::cerr << #x << " = " << x << std::endl; |
| |
| template<typename T> inline typename NumTraits<T>::Real epsilon() |
| { |
| return std::numeric_limits<typename NumTraits<T>::Real>::epsilon(); |
| } |
| |
| template<typename MatrixType> void inverse_permutation_4x4() |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| Vector4i indices(0,1,2,3); |
| for(int i = 0; i < 24; ++i) |
| { |
| MatrixType m = MatrixType::Zero(); |
| m(indices(0),0) = 1; |
| m(indices(1),1) = 1; |
| m(indices(2),2) = 1; |
| m(indices(3),3) = 1; |
| MatrixType inv = m.inverse(); |
| double error = double( (m*inv-MatrixType::Identity()).norm() / epsilon<Scalar>() ); |
| VERIFY(error == 0.0); |
| std::next_permutation(indices.data(),indices.data()+4); |
| } |
| } |
| |
| template<typename MatrixType> void inverse_general_4x4(int repeat) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| double error_sum = 0., error_max = 0.; |
| for(int i = 0; i < repeat; ++i) |
| { |
| MatrixType m; |
| RealScalar absdet; |
| do { |
| m = MatrixType::Random(); |
| absdet = ei_abs(m.determinant()); |
| } while(absdet < 10 * epsilon<Scalar>()); |
| MatrixType inv = m.inverse(); |
| double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / epsilon<Scalar>() ); |
| error_sum += error; |
| error_max = std::max(error_max, error); |
| } |
| std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl; |
| double error_avg = error_sum / repeat; |
| EIGEN_DEBUG_VAR(error_avg); |
| EIGEN_DEBUG_VAR(error_max); |
| VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25)); |
| VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0)); |
| } |
| |
| void test_eigen2_prec_inverse_4x4() |
| { |
| CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>())); |
| CALL_SUBTEST_1(( inverse_general_4x4<Matrix4f>(200000 * g_repeat) )); |
| |
| CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double,4,4,RowMajor> >())); |
| CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,RowMajor> >(200000 * g_repeat) )); |
| |
| CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>())); |
| CALL_SUBTEST_3((inverse_general_4x4<Matrix4cf>(50000 * g_repeat))); |
| } |