| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <Eigen/Array> |
| #include <Eigen/QR> |
| |
| template<typename Derived1, typename Derived2> |
| bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = precision<typename Derived1::RealScalar>()) |
| { |
| return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon |
| * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff())); |
| } |
| |
| template<typename MatrixType> void product(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| Identity.h Product.h |
| */ |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::FloatingPoint FloatingPoint; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, |
| MatrixType::Options^RowMajor> OtherMajorMatrixType; |
| |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| // this test relies a lot on Random.h, and there's not much more that we can do |
| // to test it, hence I consider that we will have tested Random.h |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols), |
| mzero = MatrixType::Zero(rows, cols); |
| RowSquareMatrixType |
| identity = RowSquareMatrixType::Identity(rows, rows), |
| square = RowSquareMatrixType::Random(rows, rows), |
| res = RowSquareMatrixType::Random(rows, rows); |
| ColSquareMatrixType |
| square2 = ColSquareMatrixType::Random(cols, cols), |
| res2 = ColSquareMatrixType::Random(cols, cols); |
| RowVectorType v1 = RowVectorType::Random(rows), |
| v2 = RowVectorType::Random(rows), |
| vzero = RowVectorType::Zero(rows); |
| ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); |
| OtherMajorMatrixType tm1 = m1; |
| |
| Scalar s1 = ei_random<Scalar>(); |
| |
| int r = ei_random<int>(0, rows-1), |
| c = ei_random<int>(0, cols-1); |
| |
| // begin testing Product.h: only associativity for now |
| // (we use Transpose.h but this doesn't count as a test for it) |
| |
| VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2)); |
| m3 = m1; |
| m3 *= m1.transpose() * m2; |
| VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2)); |
| VERIFY_IS_APPROX(m3, m1.lazy() * (m1.transpose()*m2)); |
| |
| // continue testing Product.h: distributivity |
| VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2); |
| VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2); |
| |
| // continue testing Product.h: compatibility with ScalarMultiple.h |
| VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1); |
| VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1)); |
| |
| // again, test operator() to check const-qualification |
| s1 += (square.lazy() * m1)(r,c); |
| |
| // test Product.h together with Identity.h |
| VERIFY_IS_APPROX(v1, identity*v1); |
| VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity); |
| // again, test operator() to check const-qualification |
| VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c)); |
| |
| if (rows!=cols) |
| VERIFY_RAISES_ASSERT(m3 = m1*m1); |
| |
| // test the previous tests were not screwed up because operator* returns 0 |
| // (we use the more accurate default epsilon) |
| if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1) |
| { |
| VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1)); |
| } |
| |
| // test optimized operator+= path |
| res = square; |
| res += (m1 * m2.transpose()).lazy(); |
| VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); |
| if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1) |
| { |
| VERIFY(areNotApprox(res,square + m2 * m1.transpose())); |
| } |
| vcres = vc2; |
| vcres += (m1.transpose() * v1).lazy(); |
| VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1); |
| tm1 = m1; |
| VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1); |
| VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1); |
| |
| // test submatrix and matrix/vector product |
| for (int i=0; i<rows; ++i) |
| res.row(i) = m1.row(i) * m2.transpose(); |
| VERIFY_IS_APPROX(res, m1 * m2.transpose()); |
| // the other way round: |
| for (int i=0; i<rows; ++i) |
| res.col(i) = m1 * m2.transpose().col(i); |
| VERIFY_IS_APPROX(res, m1 * m2.transpose()); |
| |
| res2 = square2; |
| res2 += (m1.transpose() * m2).lazy(); |
| VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2); |
| |
| if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1) |
| { |
| VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1)); |
| } |
| } |
| |