| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <limits> |
| #include <Eigen/Eigenvalues> |
| |
| template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| /* this test covers the following files: |
| EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) |
| */ |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; |
| typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; |
| |
| RealScalar largerEps = 10*test_precision<RealScalar>(); |
| |
| MatrixType a = MatrixType::Random(rows,cols); |
| MatrixType a1 = MatrixType::Random(rows,cols); |
| MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; |
| symmA.template triangularView<StrictlyUpper>().setZero(); |
| |
| MatrixType b = MatrixType::Random(rows,cols); |
| MatrixType b1 = MatrixType::Random(rows,cols); |
| MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; |
| symmB.template triangularView<StrictlyUpper>().setZero(); |
| |
| SelfAdjointEigenSolver<MatrixType> eiSymm(symmA); |
| SelfAdjointEigenSolver<MatrixType> eiDirect; |
| eiDirect.computeDirect(symmA); |
| // generalized eigen pb |
| GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB); |
| |
| VERIFY_IS_EQUAL(eiSymm.info(), Success); |
| VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox( |
| eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); |
| VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); |
| |
| VERIFY_IS_EQUAL(eiDirect.info(), Success); |
| VERIFY((symmA.template selfadjointView<Lower>() * eiDirect.eigenvectors()).isApprox( |
| eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps)); |
| VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues()); |
| |
| SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false); |
| VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success); |
| VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); |
| |
| // generalized eigen problem Ax = lBx |
| eiSymmGen.compute(symmA, symmB,Ax_lBx); |
| VERIFY_IS_EQUAL(eiSymmGen.info(), Success); |
| VERIFY((symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox( |
| symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); |
| |
| // generalized eigen problem BAx = lx |
| eiSymmGen.compute(symmA, symmB,BAx_lx); |
| VERIFY_IS_EQUAL(eiSymmGen.info(), Success); |
| VERIFY((symmB.template selfadjointView<Lower>() * (symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( |
| (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); |
| |
| // generalized eigen problem ABx = lx |
| eiSymmGen.compute(symmA, symmB,ABx_lx); |
| VERIFY_IS_EQUAL(eiSymmGen.info(), Success); |
| VERIFY((symmA.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( |
| (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); |
| |
| |
| MatrixType sqrtSymmA = eiSymm.operatorSqrt(); |
| VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA); |
| VERIFY_IS_APPROX(sqrtSymmA, symmA.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt()); |
| |
| MatrixType id = MatrixType::Identity(rows, cols); |
| VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1)); |
| |
| SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized; |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.info()); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues()); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); |
| |
| eiSymmUninitialized.compute(symmA, false); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); |
| VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); |
| |
| // test Tridiagonalization's methods |
| Tridiagonalization<MatrixType> tridiag(symmA); |
| // FIXME tridiag.matrixQ().adjoint() does not work |
| VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint()); |
| |
| if (rows > 1) |
| { |
| // Test matrix with NaN |
| symmA(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); |
| SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmA); |
| VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence); |
| } |
| } |
| |
| void test_eigensolver_selfadjoint() |
| { |
| int s; |
| for(int i = 0; i < g_repeat; i++) { |
| // very important to test 3x3 and 2x2 matrices since we provide special paths for them |
| CALL_SUBTEST_1( selfadjointeigensolver(Matrix2d()) ); |
| CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) ); |
| CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) ); |
| s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(s,s)) ); |
| s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(s,s)) ); |
| s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(s,s)) ); |
| |
| s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| CALL_SUBTEST_9( selfadjointeigensolver(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(s,s)) ); |
| |
| // some trivial but implementation-wise tricky cases |
| CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) ); |
| CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) ); |
| CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) ); |
| CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) ); |
| } |
| |
| // Test problem size constructors |
| s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf>(s)); |
| CALL_SUBTEST_8(Tridiagonalization<MatrixXf>(s)); |
| |
| EIGEN_UNUSED_VARIABLE(s) |
| } |
| |