| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| // discard stack allocation as that too bypasses malloc |
| #define EIGEN_STACK_ALLOCATION_LIMIT 0 |
| #define EIGEN_RUNTIME_NO_MALLOC |
| #include "main.h" |
| #include <Eigen/SVD> |
| |
| template<typename MatrixType, int QRPreconditioner> |
| void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd) |
| { |
| typedef typename MatrixType::Index Index; |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime |
| }; |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType; |
| typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType; |
| typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType; |
| typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType; |
| |
| MatrixType sigma = MatrixType::Zero(rows,cols); |
| sigma.diagonal() = svd.singularValues().template cast<Scalar>(); |
| MatrixUType u = svd.matrixU(); |
| MatrixVType v = svd.matrixV(); |
| |
| VERIFY_IS_APPROX(m, u * sigma * v.adjoint()); |
| VERIFY_IS_UNITARY(u); |
| VERIFY_IS_UNITARY(v); |
| } |
| |
| template<typename MatrixType, int QRPreconditioner> |
| void jacobisvd_compare_to_full(const MatrixType& m, |
| unsigned int computationOptions, |
| const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd) |
| { |
| typedef typename MatrixType::Index Index; |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| Index diagSize = (std::min)(rows, cols); |
| |
| JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions); |
| |
| VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues()); |
| if(computationOptions & ComputeFullU) |
| VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU()); |
| if(computationOptions & ComputeThinU) |
| VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize)); |
| if(computationOptions & ComputeFullV) |
| VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV()); |
| if(computationOptions & ComputeThinV) |
| VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize)); |
| } |
| |
| template<typename MatrixType, int QRPreconditioner> |
| void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::Index Index; |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime |
| }; |
| |
| typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType; |
| typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType; |
| |
| RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols)); |
| JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions); |
| SolutionType x = svd.solve(rhs); |
| // evaluate normal equation which works also for least-squares solutions |
| VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs); |
| } |
| |
| template<typename MatrixType, int QRPreconditioner> |
| void jacobisvd_test_all_computation_options(const MatrixType& m) |
| { |
| if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols()) |
| return; |
| JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV); |
| |
| jacobisvd_check_full(m, fullSvd); |
| jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV); |
| |
| if(QRPreconditioner == FullPivHouseholderQRPreconditioner) |
| return; |
| |
| jacobisvd_compare_to_full(m, ComputeFullU, fullSvd); |
| jacobisvd_compare_to_full(m, ComputeFullV, fullSvd); |
| jacobisvd_compare_to_full(m, 0, fullSvd); |
| |
| if (MatrixType::ColsAtCompileTime == Dynamic) { |
| // thin U/V are only available with dynamic number of columns |
| jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd); |
| jacobisvd_compare_to_full(m, ComputeThinV, fullSvd); |
| jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd); |
| jacobisvd_compare_to_full(m, ComputeThinU , fullSvd); |
| jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd); |
| jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV); |
| jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV); |
| jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV); |
| |
| // test reconstruction |
| typedef typename MatrixType::Index Index; |
| Index diagSize = (std::min)(m.rows(), m.cols()); |
| JacobiSVD<MatrixType, QRPreconditioner> svd(m, ComputeThinU | ComputeThinV); |
| VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint()); |
| } |
| } |
| |
| template<typename MatrixType> |
| void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true) |
| { |
| MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a; |
| |
| jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m); |
| jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m); |
| jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m); |
| jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m); |
| } |
| |
| template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::Index Index; |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime |
| }; |
| |
| typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType; |
| |
| RhsType rhs(rows); |
| |
| JacobiSVD<MatrixType> svd; |
| VERIFY_RAISES_ASSERT(svd.matrixU()) |
| VERIFY_RAISES_ASSERT(svd.singularValues()) |
| VERIFY_RAISES_ASSERT(svd.matrixV()) |
| VERIFY_RAISES_ASSERT(svd.solve(rhs)) |
| |
| MatrixType a = MatrixType::Zero(rows, cols); |
| a.setZero(); |
| svd.compute(a, 0); |
| VERIFY_RAISES_ASSERT(svd.matrixU()) |
| VERIFY_RAISES_ASSERT(svd.matrixV()) |
| svd.singularValues(); |
| VERIFY_RAISES_ASSERT(svd.solve(rhs)) |
| |
| if (ColsAtCompileTime == Dynamic) |
| { |
| svd.compute(a, ComputeThinU); |
| svd.matrixU(); |
| VERIFY_RAISES_ASSERT(svd.matrixV()) |
| VERIFY_RAISES_ASSERT(svd.solve(rhs)) |
| |
| svd.compute(a, ComputeThinV); |
| svd.matrixV(); |
| VERIFY_RAISES_ASSERT(svd.matrixU()) |
| VERIFY_RAISES_ASSERT(svd.solve(rhs)) |
| |
| JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr; |
| VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV)) |
| VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV)) |
| VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV)) |
| } |
| else |
| { |
| VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU)) |
| VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV)) |
| } |
| } |
| |
| template<typename MatrixType> |
| void jacobisvd_method() |
| { |
| enum { Size = MatrixType::RowsAtCompileTime }; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Matrix<RealScalar, Size, 1> RealVecType; |
| MatrixType m = MatrixType::Identity(); |
| VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones()); |
| VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU()); |
| VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV()); |
| VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m); |
| } |
| |
| // work around stupid msvc error when constructing at compile time an expression that involves |
| // a division by zero, even if the numeric type has floating point |
| template<typename Scalar> |
| EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); } |
| |
| // workaround aggressive optimization in ICC |
| template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; } |
| |
| template<typename MatrixType> |
| void jacobisvd_inf_nan() |
| { |
| // all this function does is verify we don't iterate infinitely on nan/inf values |
| |
| JacobiSVD<MatrixType> svd; |
| typedef typename MatrixType::Scalar Scalar; |
| Scalar some_inf = Scalar(1) / zero<Scalar>(); |
| VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf)); |
| svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV); |
| |
| Scalar some_nan = zero<Scalar>() / zero<Scalar>(); |
| VERIFY(some_nan != some_nan); |
| svd.compute(MatrixType::Constant(10,10,some_nan), ComputeFullU | ComputeFullV); |
| |
| MatrixType m = MatrixType::Zero(10,10); |
| m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf; |
| svd.compute(m, ComputeFullU | ComputeFullV); |
| |
| m = MatrixType::Zero(10,10); |
| m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_nan; |
| svd.compute(m, ComputeFullU | ComputeFullV); |
| } |
| |
| // Regression test for bug 286: JacobiSVD loops indefinitely with some |
| // matrices containing denormal numbers. |
| void jacobisvd_bug286() |
| { |
| #if defined __INTEL_COMPILER |
| // shut up warning #239: floating point underflow |
| #pragma warning push |
| #pragma warning disable 239 |
| #endif |
| Matrix2d M; |
| M << -7.90884e-313, -4.94e-324, |
| 0, 5.60844e-313; |
| #if defined __INTEL_COMPILER |
| #pragma warning pop |
| #endif |
| JacobiSVD<Matrix2d> svd; |
| svd.compute(M); // just check we don't loop indefinitely |
| } |
| |
| void jacobisvd_preallocate() |
| { |
| Vector3f v(3.f, 2.f, 1.f); |
| MatrixXf m = v.asDiagonal(); |
| |
| internal::set_is_malloc_allowed(false); |
| VERIFY_RAISES_ASSERT(VectorXf v(10);) |
| JacobiSVD<MatrixXf> svd; |
| internal::set_is_malloc_allowed(true); |
| svd.compute(m); |
| VERIFY_IS_APPROX(svd.singularValues(), v); |
| |
| JacobiSVD<MatrixXf> svd2(3,3); |
| internal::set_is_malloc_allowed(false); |
| svd2.compute(m); |
| internal::set_is_malloc_allowed(true); |
| VERIFY_IS_APPROX(svd2.singularValues(), v); |
| VERIFY_RAISES_ASSERT(svd2.matrixU()); |
| VERIFY_RAISES_ASSERT(svd2.matrixV()); |
| svd2.compute(m, ComputeFullU | ComputeFullV); |
| VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); |
| VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); |
| internal::set_is_malloc_allowed(false); |
| svd2.compute(m); |
| internal::set_is_malloc_allowed(true); |
| |
| JacobiSVD<MatrixXf> svd3(3,3,ComputeFullU|ComputeFullV); |
| internal::set_is_malloc_allowed(false); |
| svd2.compute(m); |
| internal::set_is_malloc_allowed(true); |
| VERIFY_IS_APPROX(svd2.singularValues(), v); |
| VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); |
| VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); |
| internal::set_is_malloc_allowed(false); |
| svd2.compute(m, ComputeFullU|ComputeFullV); |
| internal::set_is_malloc_allowed(true); |
| } |
| |
| void test_jacobisvd() |
| { |
| CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) )); |
| CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) )); |
| CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) )); |
| CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) )); |
| |
| for(int i = 0; i < g_repeat; i++) { |
| Matrix2cd m; |
| m << 0, 1, |
| 0, 1; |
| CALL_SUBTEST_1(( jacobisvd(m, false) )); |
| m << 1, 0, |
| 1, 0; |
| CALL_SUBTEST_1(( jacobisvd(m, false) )); |
| |
| Matrix2d n; |
| n << 0, 0, |
| 0, 0; |
| CALL_SUBTEST_2(( jacobisvd(n, false) )); |
| n << 0, 0, |
| 0, 1; |
| CALL_SUBTEST_2(( jacobisvd(n, false) )); |
| |
| CALL_SUBTEST_3(( jacobisvd<Matrix3f>() )); |
| CALL_SUBTEST_4(( jacobisvd<Matrix4d>() )); |
| CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() )); |
| CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) )); |
| |
| int r = internal::random<int>(1, 30), |
| c = internal::random<int>(1, 30); |
| CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) )); |
| CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) )); |
| (void) r; |
| (void) c; |
| |
| // Test on inf/nan matrix |
| CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() ); |
| } |
| |
| CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) )); |
| CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) )); |
| |
| // test matrixbase method |
| CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() )); |
| CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() )); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) ); |
| |
| // Check that preallocation avoids subsequent mallocs |
| CALL_SUBTEST_9( jacobisvd_preallocate() ); |
| |
| // Regression check for bug 286 |
| CALL_SUBTEST_2( jacobisvd_bug286() ); |
| } |