| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2009 Mark Borgerding mark a borgerding net |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/FFT> |
| |
| template <typename T> |
| std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); } |
| |
| using namespace std; |
| using namespace Eigen; |
| |
| float norm(float x) {return x*x;} |
| double norm(double x) {return x*x;} |
| long double norm(long double x) {return x*x;} |
| |
| template < typename T> |
| complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); } |
| |
| complex<long double> promote(float x) { return complex<long double>( x); } |
| complex<long double> promote(double x) { return complex<long double>( x); } |
| complex<long double> promote(long double x) { return complex<long double>( x); } |
| |
| |
| template <typename VT1,typename VT2> |
| long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf) |
| { |
| long double totalpower=0; |
| long double difpower=0; |
| long double pi = acos((long double)-1 ); |
| for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) { |
| complex<long double> acc = 0; |
| long double phinc = -2.*k0* pi / timebuf.size(); |
| for (size_t k1=0;k1<(size_t)timebuf.size();++k1) { |
| acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) ); |
| } |
| totalpower += norm(acc); |
| complex<long double> x = promote(fftbuf[k0]); |
| complex<long double> dif = acc - x; |
| difpower += norm(dif); |
| //cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl; |
| } |
| cerr << "rmse:" << sqrt(difpower/totalpower) << endl; |
| return sqrt(difpower/totalpower); |
| } |
| |
| template <typename VT1,typename VT2> |
| long double dif_rmse( const VT1 buf1,const VT2 buf2) |
| { |
| long double totalpower=0; |
| long double difpower=0; |
| size_t n = (min)( buf1.size(),buf2.size() ); |
| for (size_t k=0;k<n;++k) { |
| totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.; |
| difpower += norm(buf1[k] - buf2[k]); |
| } |
| return sqrt(difpower/totalpower); |
| } |
| |
| enum { StdVectorContainer, EigenVectorContainer }; |
| |
| template<int Container, typename Scalar> struct VectorType; |
| |
| template<typename Scalar> struct VectorType<StdVectorContainer,Scalar> |
| { |
| typedef vector<Scalar> type; |
| }; |
| |
| template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar> |
| { |
| typedef Matrix<Scalar,Dynamic,1> type; |
| }; |
| |
| template <int Container, typename T> |
| void test_scalar_generic(int nfft) |
| { |
| typedef typename FFT<T>::Complex Complex; |
| typedef typename FFT<T>::Scalar Scalar; |
| typedef typename VectorType<Container,Scalar>::type ScalarVector; |
| typedef typename VectorType<Container,Complex>::type ComplexVector; |
| |
| FFT<T> fft; |
| ScalarVector tbuf(nfft); |
| ComplexVector freqBuf; |
| for (int k=0;k<nfft;++k) |
| tbuf[k]= (T)( rand()/(double)RAND_MAX - .5); |
| |
| // make sure it DOESN'T give the right full spectrum answer |
| // if we've asked for half-spectrum |
| fft.SetFlag(fft.HalfSpectrum ); |
| fft.fwd( freqBuf,tbuf); |
| VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) ); |
| VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );// gross check |
| |
| fft.ClearFlag(fft.HalfSpectrum ); |
| fft.fwd( freqBuf,tbuf); |
| VERIFY( (size_t)freqBuf.size() == (size_t)nfft); |
| VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );// gross check |
| |
| if (nfft&1) |
| return; // odd FFTs get the wrong size inverse FFT |
| |
| ScalarVector tbuf2; |
| fft.inv( tbuf2 , freqBuf); |
| VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );// gross check |
| |
| |
| // verify that the Unscaled flag takes effect |
| ScalarVector tbuf3; |
| fft.SetFlag(fft.Unscaled); |
| |
| fft.inv( tbuf3 , freqBuf); |
| |
| for (int k=0;k<nfft;++k) |
| tbuf3[k] *= T(1./nfft); |
| |
| |
| //for (size_t i=0;i<(size_t) tbuf.size();++i) |
| // cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) << endl; |
| |
| VERIFY( dif_rmse(tbuf,tbuf3) < test_precision<T>() );// gross check |
| |
| // verify that ClearFlag works |
| fft.ClearFlag(fft.Unscaled); |
| fft.inv( tbuf2 , freqBuf); |
| VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );// gross check |
| } |
| |
| template <typename T> |
| void test_scalar(int nfft) |
| { |
| test_scalar_generic<StdVectorContainer,T>(nfft); |
| //test_scalar_generic<EigenVectorContainer,T>(nfft); |
| } |
| |
| |
| template <int Container, typename T> |
| void test_complex_generic(int nfft) |
| { |
| typedef typename FFT<T>::Complex Complex; |
| typedef typename VectorType<Container,Complex>::type ComplexVector; |
| |
| FFT<T> fft; |
| |
| ComplexVector inbuf(nfft); |
| ComplexVector outbuf; |
| ComplexVector buf3; |
| for (int k=0;k<nfft;++k) |
| inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) ); |
| fft.fwd( outbuf , inbuf); |
| |
| VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check |
| fft.inv( buf3 , outbuf); |
| |
| VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check |
| |
| // verify that the Unscaled flag takes effect |
| ComplexVector buf4; |
| fft.SetFlag(fft.Unscaled); |
| fft.inv( buf4 , outbuf); |
| for (int k=0;k<nfft;++k) |
| buf4[k] *= T(1./nfft); |
| VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check |
| |
| // verify that ClearFlag works |
| fft.ClearFlag(fft.Unscaled); |
| fft.inv( buf3 , outbuf); |
| VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check |
| } |
| |
| template <typename T> |
| void test_complex(int nfft) |
| { |
| test_complex_generic<StdVectorContainer,T>(nfft); |
| test_complex_generic<EigenVectorContainer,T>(nfft); |
| } |
| /* |
| template <typename T,int nrows,int ncols> |
| void test_complex2d() |
| { |
| typedef typename Eigen::FFT<T>::Complex Complex; |
| FFT<T> fft; |
| Eigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2; |
| |
| src = Eigen::Matrix<Complex,nrows,ncols>::Random(); |
| //src = Eigen::Matrix<Complex,nrows,ncols>::Identity(); |
| |
| for (int k=0;k<ncols;k++) { |
| Eigen::Matrix<Complex,nrows,1> tmpOut; |
| fft.fwd( tmpOut,src.col(k) ); |
| dst2.col(k) = tmpOut; |
| } |
| |
| for (int k=0;k<nrows;k++) { |
| Eigen::Matrix<Complex,1,ncols> tmpOut; |
| fft.fwd( tmpOut, dst2.row(k) ); |
| dst2.row(k) = tmpOut; |
| } |
| |
| fft.fwd2(dst.data(),src.data(),ncols,nrows); |
| fft.inv2(src2.data(),dst.data(),ncols,nrows); |
| VERIFY( (src-src2).norm() < test_precision<T>() ); |
| VERIFY( (dst-dst2).norm() < test_precision<T>() ); |
| } |
| */ |
| |
| |
| void test_return_by_value(int len) |
| { |
| VectorXf in; |
| VectorXf in1; |
| in.setRandom( len ); |
| VectorXcf out1,out2; |
| FFT<float> fft; |
| |
| fft.SetFlag(fft.HalfSpectrum ); |
| |
| fft.fwd(out1,in); |
| out2 = fft.fwd(in); |
| VERIFY( (out1-out2).norm() < test_precision<float>() ); |
| in1 = fft.inv(out1); |
| VERIFY( (in1-in).norm() < test_precision<float>() ); |
| } |
| |
| void test_FFTW() |
| { |
| CALL_SUBTEST( test_return_by_value(32) ); |
| //CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) ); |
| //CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) ); |
| CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); |
| CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); |
| CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); |
| CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); |
| CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); |
| CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); |
| CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); |
| |
| CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); |
| CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); |
| CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); |
| CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); |
| CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); |
| |
| #ifdef EIGEN_HAS_FFTWL |
| CALL_SUBTEST( test_complex<long double>(32) ); |
| CALL_SUBTEST( test_complex<long double>(256) ); |
| CALL_SUBTEST( test_complex<long double>(3*8) ); |
| CALL_SUBTEST( test_complex<long double>(5*32) ); |
| CALL_SUBTEST( test_complex<long double>(2*3*4) ); |
| CALL_SUBTEST( test_complex<long double>(2*3*4*5) ); |
| CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) ); |
| |
| CALL_SUBTEST( test_scalar<long double>(32) ); |
| CALL_SUBTEST( test_scalar<long double>(45) ); |
| CALL_SUBTEST( test_scalar<long double>(50) ); |
| CALL_SUBTEST( test_scalar<long double>(256) ); |
| CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) ); |
| #endif |
| } |