Fixes #2952
diff --git a/Eigen/src/Core/VectorwiseOp.h b/Eigen/src/Core/VectorwiseOp.h
index 9ccbf7d..9e34d8c 100644
--- a/Eigen/src/Core/VectorwiseOp.h
+++ b/Eigen/src/Core/VectorwiseOp.h
@@ -146,6 +146,22 @@
const BinaryOp& binaryFunc() const { return m_functor; }
const BinaryOp m_functor;
};
+
+template <typename Scalar>
+struct scalar_replace_zero_with_one_op {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const Scalar& x) const {
+ return numext::is_exactly_zero(x) ? Scalar(1) : x;
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& x) const {
+ return pselect(pcmp_eq(x, pzero(x)), pset1<Packet>(Scalar(1)), x);
+ }
+};
+template <typename Scalar>
+struct functor_traits<scalar_replace_zero_with_one_op<Scalar>> {
+ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasCmp };
+};
+
} // namespace internal
/** \class VectorwiseOp
@@ -624,18 +640,28 @@
return m_matrix / extendedTo(other.derived());
}
+ using Normalized_NonzeroNormType =
+ CwiseUnaryOp<internal::scalar_replace_zero_with_one_op<Scalar>, const NormReturnType>;
+ using NormalizedReturnType = CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const ExpressionTypeNestedCleaned,
+ const typename OppositeExtendedType<Normalized_NonzeroNormType>::Type>;
+
/** \returns an expression where each column (or row) of the referenced matrix are normalized.
* The referenced matrix is \b not modified.
+ *
+ * \warning If the input columns (or rows) are too small (i.e., their norm equals to 0), they remain unchanged in the
+ * resulting expression.
+ *
* \sa MatrixBase::normalized(), normalize()
*/
- EIGEN_DEVICE_FUNC CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const ExpressionTypeNestedCleaned,
- const typename OppositeExtendedType<NormReturnType>::Type>
- normalized() const {
- return m_matrix.cwiseQuotient(extendedToOpposite(this->norm()));
+ EIGEN_DEVICE_FUNC NormalizedReturnType normalized() const {
+ return m_matrix.cwiseQuotient(extendedToOpposite(Normalized_NonzeroNormType(this->norm())));
}
/** Normalize in-place each row or columns of the referenced matrix.
- * \sa MatrixBase::normalize(), normalized()
+ *
+ * \warning If the input columns (or rows) are too small (i.e., their norm equals to 0), they are left unchanged.
+ *
+ * \sa MatrixBase::normalized(), normalize()
*/
EIGEN_DEVICE_FUNC void normalize() { m_matrix = this->normalized(); }
diff --git a/test/vectorwiseop.cpp b/test/vectorwiseop.cpp
index 6d0e5cb..d037bb4 100644
--- a/test/vectorwiseop.cpp
+++ b/test/vectorwiseop.cpp
@@ -114,6 +114,8 @@
RealColVectorType rcres;
RealRowVectorType rrres;
+ Scalar small_scalar = (std::numeric_limits<RealScalar>::min)();
+
// test broadcast assignment
m2 = m1;
m2.colwise() = colvec;
@@ -171,18 +173,26 @@
VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum().x(), m1.col(0).cwiseAbs().sum());
// test normalized
- m2 = m1.colwise().normalized();
- VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized());
- m2 = m1.rowwise().normalized();
- VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized());
+ m2 = m1;
+ m2.col(c).fill(small_scalar);
+ m3 = m2.colwise().normalized();
+ for (Index k = 0; k < cols; ++k) VERIFY_IS_APPROX(m3.col(k), m2.col(k).normalized());
+ m2 = m1;
+ m2.row(r).setZero();
+ m3 = m2.rowwise().normalized();
+ for (Index k = 0; k < rows; ++k) VERIFY_IS_APPROX(m3.row(k), m2.row(k).normalized());
// test normalize
m2 = m1;
- m2.colwise().normalize();
- VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized());
+ m2.col(c).setZero();
+ m3 = m2;
+ m3.colwise().normalize();
+ for (Index k = 0; k < cols; ++k) VERIFY_IS_APPROX(m3.col(k), m2.col(k).normalized());
m2 = m1;
- m2.rowwise().normalize();
- VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized());
+ m2.row(r).fill(small_scalar);
+ m3 = m2;
+ m3.rowwise().normalize();
+ for (Index k = 0; k < rows; ++k) VERIFY_IS_APPROX(m3.row(k), m2.row(k).normalized());
// test with partial reduction of products
Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> m1m1 = m1 * m1.transpose();