| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <limits> |
| #include <Eigen/Eigenvalues> |
| |
| #ifdef HAS_GSL |
| #include "gsl_helper.h" |
| #endif |
| |
| template<typename MatrixType> void eigensolver(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| EigenSolver.h |
| */ |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; |
| typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; |
| |
| MatrixType a = MatrixType::Random(rows,cols); |
| MatrixType a1 = MatrixType::Random(rows,cols); |
| MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; |
| |
| EigenSolver<MatrixType> ei0(symmA); |
| VERIFY_IS_EQUAL(ei0.info(), Success); |
| VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); |
| VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()), |
| (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); |
| |
| EigenSolver<MatrixType> ei1(a); |
| VERIFY_IS_EQUAL(ei1.info(), Success); |
| VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); |
| VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), |
| ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); |
| VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues()); |
| |
| EigenSolver<MatrixType> eiNoEivecs(a, false); |
| VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); |
| VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); |
| VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix()); |
| |
| MatrixType id = MatrixType::Identity(rows, cols); |
| VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); |
| |
| if (rows > 2) |
| { |
| // Test matrix with NaN |
| a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); |
| EigenSolver<MatrixType> eiNaN(a); |
| VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); |
| } |
| } |
| |
| template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) |
| { |
| EigenSolver<MatrixType> eig; |
| VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); |
| VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix()); |
| VERIFY_RAISES_ASSERT(eig.eigenvalues()); |
| |
| MatrixType a = MatrixType::Random(m.rows(),m.cols()); |
| eig.compute(a, false); |
| VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); |
| } |
| |
| void test_eigensolver_generic() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( eigensolver(Matrix4f()) ); |
| CALL_SUBTEST_2( eigensolver(MatrixXd(17,17)) ); |
| |
| // some trivial but implementation-wise tricky cases |
| CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) ); |
| CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) ); |
| CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) ); |
| CALL_SUBTEST_4( eigensolver(Matrix2d()) ); |
| } |
| |
| CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) ); |
| CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(17,17)) ); |
| CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) ); |
| CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) ); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_5(EigenSolver<MatrixXf>(10)); |
| } |