| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <Eigen/QR> |
| |
| template<typename MatrixType> void householder(const MatrixType& m) |
| { |
| static bool even = true; |
| even = !even; |
| /* this test covers the following files: |
| Householder.h |
| */ |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, ei_decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType; |
| typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType; |
| |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> RightSquareMatrixType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic> VBlockMatrixType; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType; |
| |
| Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp(std::max(rows,cols)); |
| Scalar* tmp = &_tmp.coeffRef(0,0); |
| |
| Scalar beta; |
| RealScalar alpha; |
| EssentialVectorType essential; |
| |
| VectorType v1 = VectorType::Random(rows), v2; |
| v2 = v1; |
| v1.makeHouseholder(essential, beta, alpha); |
| v1.applyHouseholderOnTheLeft(essential,beta,tmp); |
| VERIFY_IS_APPROX(v1.norm(), v2.norm()); |
| if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows-1).norm(), v1.norm()); |
| v1 = VectorType::Random(rows); |
| v2 = v1; |
| v1.applyHouseholderOnTheLeft(essential,beta,tmp); |
| VERIFY_IS_APPROX(v1.norm(), v2.norm()); |
| |
| MatrixType m1(rows, cols), |
| m2(rows, cols); |
| |
| v1 = VectorType::Random(rows); |
| if(even) v1.tail(rows-1).setZero(); |
| m1.colwise() = v1; |
| m2 = m1; |
| m1.col(0).makeHouseholder(essential, beta, alpha); |
| m1.applyHouseholderOnTheLeft(essential,beta,tmp); |
| VERIFY_IS_APPROX(m1.norm(), m2.norm()); |
| if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1,0,rows-1,cols).norm(), m1.norm()); |
| VERIFY_IS_MUCH_SMALLER_THAN(ei_imag(m1(0,0)), ei_real(m1(0,0))); |
| VERIFY_IS_APPROX(ei_real(m1(0,0)), alpha); |
| |
| v1 = VectorType::Random(rows); |
| if(even) v1.tail(rows-1).setZero(); |
| SquareMatrixType m3(rows,rows), m4(rows,rows); |
| m3.rowwise() = v1.transpose(); |
| m4 = m3; |
| m3.row(0).makeHouseholder(essential, beta, alpha); |
| m3.applyHouseholderOnTheRight(essential,beta,tmp); |
| VERIFY_IS_APPROX(m3.norm(), m4.norm()); |
| if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0,1,rows,rows-1).norm(), m3.norm()); |
| VERIFY_IS_MUCH_SMALLER_THAN(ei_imag(m3(0,0)), ei_real(m3(0,0))); |
| VERIFY_IS_APPROX(ei_real(m3(0,0)), alpha); |
| |
| // test householder sequence on the left with a shift |
| |
| int shift = ei_random(0, std::max(rows-2,0)); |
| int brows = rows - shift; |
| m1.setRandom(rows, cols); |
| HBlockMatrixType hbm = m1.block(shift,0,brows,cols); |
| HouseholderQR<HBlockMatrixType> qr(hbm); |
| m2 = m1; |
| m2.block(shift,0,brows,cols) = qr.matrixQR(); |
| HCoeffsVectorType hc = qr.hCoeffs().conjugate(); |
| HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc, false, hc.size(), shift); |
| MatrixType m5 = m2; |
| m5.block(shift,0,brows,cols).template triangularView<StrictlyLower>().setZero(); |
| VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly |
| m3 = hseq; |
| VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying |
| |
| // test householder sequence on the right with a shift |
| |
| TMatrixType tm2 = m2.transpose(); |
| HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc, false, hc.size(), shift); |
| VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly |
| m3 = rhseq; |
| VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying |
| } |
| |
| void test_householder() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( householder(Matrix<double,2,2>()) ); |
| CALL_SUBTEST_2( householder(Matrix<float,2,3>()) ); |
| CALL_SUBTEST_3( householder(Matrix<double,3,5>()) ); |
| CALL_SUBTEST_4( householder(Matrix<float,4,4>()) ); |
| CALL_SUBTEST_5( householder(MatrixXd(10,12)) ); |
| CALL_SUBTEST_6( householder(MatrixXcf(16,17)) ); |
| CALL_SUBTEST_7( householder(MatrixXf(25,7)) ); |
| CALL_SUBTEST_8( householder(Matrix<double,1,1>()) ); |
| } |
| } |