| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| |
| template<typename MatrixType> void diagonal(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols); |
| |
| //check diagonal() |
| VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal()); |
| m2.diagonal() = 2 * m1.diagonal(); |
| m2.diagonal()[0] *= 3; |
| |
| if (rows>2) |
| { |
| enum { |
| N1 = MatrixType::RowsAtCompileTime>1 ? 1 : 0, |
| N2 = MatrixType::RowsAtCompileTime>2 ? -2 : 0 |
| }; |
| |
| // check sub/super diagonal |
| m2.template diagonal<N1>() = 2 * m1.template diagonal<N1>(); |
| m2.template diagonal<N1>()[0] *= 3; |
| VERIFY_IS_APPROX(m2.template diagonal<N1>()[0], static_cast<Scalar>(6) * m1.template diagonal<N1>()[0]); |
| |
| m2.template diagonal<N2>() = 2 * m1.template diagonal<N2>(); |
| m2.template diagonal<N2>()[0] *= 3; |
| VERIFY_IS_APPROX(m2.template diagonal<N2>()[0], static_cast<Scalar>(6) * m1.template diagonal<N2>()[0]); |
| |
| m2.diagonal(N1) = 2 * m1.diagonal(N1); |
| m2.diagonal(N1)[0] *= 3; |
| VERIFY_IS_APPROX(m2.diagonal(N1)[0], static_cast<Scalar>(6) * m1.diagonal(N1)[0]); |
| |
| m2.diagonal(N2) = 2 * m1.diagonal(N2); |
| m2.diagonal(N2)[0] *= 3; |
| VERIFY_IS_APPROX(m2.diagonal(N2)[0], static_cast<Scalar>(6) * m1.diagonal(N2)[0]); |
| } |
| } |
| |
| void test_diagonal() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( diagonal(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( diagonal(Matrix4d()) ); |
| CALL_SUBTEST_2( diagonal(MatrixXcf(3, 3)) ); |
| CALL_SUBTEST_2( diagonal(MatrixXi(8, 12)) ); |
| CALL_SUBTEST_2( diagonal(MatrixXcd(20, 20)) ); |
| CALL_SUBTEST_1( diagonal(MatrixXf(21, 19)) ); |
| CALL_SUBTEST_1( diagonal(Matrix<float,Dynamic,4>(3, 4)) ); |
| } |
| } |