blob: d463499919a58896253bbf879b5ef788a5d9a532 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
template<typename MatrixType>
bool equalsIdentity(const MatrixType& A)
{
typedef typename MatrixType::Scalar Scalar;
Scalar zero = static_cast<Scalar>(0);
bool offDiagOK = true;
for (int i = 0; i < A.rows(); ++i) {
for (int j = i+1; j < A.cols(); ++j) {
offDiagOK = offDiagOK && (A(i,j) == zero);
}
}
for (int i = 0; i < A.rows(); ++i) {
for (int j = 0; j < i; ++j) {
offDiagOK = offDiagOK && (A(i,j) == zero);
}
}
bool diagOK = (A.diagonal().array() == 1).all();
return offDiagOK && diagOK;
}
template<typename VectorType>
void testVectorType(const VectorType& base)
{
typedef typename ei_traits<VectorType>::Scalar Scalar;
Scalar low = ei_random<Scalar>(-500,500);
Scalar high = ei_random<Scalar>(-500,500);
if (low>high) std::swap(low,high);
const int size = base.size();
const Scalar step = (high-low)/(size-1);
// check whether the result yields what we expect it to do
VectorType m(base);
m.setLinSpaced(low,high,size);
VectorType n(size);
for (int i=0; i<size; ++i)
n(i) = low+i*step;
VERIFY( (m-n).norm() < std::numeric_limits<Scalar>::epsilon()*10e3 );
// random access version
m = VectorType::LinSpaced(low,high,size);
VERIFY( (m-n).norm() < std::numeric_limits<Scalar>::epsilon()*10e3 );
// These guys sometimes fail! This is not good. Any ideas how to fix them!?
//VERIFY( m(m.size()-1) == high );
//VERIFY( m(0) == low );
// sequential access version
m = VectorType::LinSpaced(Sequential,low,high,size);
VERIFY( (m-n).norm() < std::numeric_limits<Scalar>::epsilon()*10e3 );
// These guys sometimes fail! This is not good. Any ideas how to fix them!?
//VERIFY( m(m.size()-1) == high );
//VERIFY( m(0) == low );
// check whether everything works with row and col major vectors
Matrix<Scalar,Dynamic,1> row_vector(size);
Matrix<Scalar,1,Dynamic> col_vector(size);
row_vector.setLinSpaced(low,high,size);
col_vector.setLinSpaced(low,high,size);
VERIFY( (row_vector-col_vector.transpose()).norm() < 1e-10 );
Matrix<Scalar,Dynamic,1> size_changer(size+50);
size_changer.setLinSpaced(low,high,size);
VERIFY( size_changer.size() == size );
}
template<typename MatrixType>
void testMatrixType(const MatrixType& m)
{
typedef typename MatrixType::Index Index;
const Index rows = m.rows();
const Index cols = m.cols();
MatrixType A;
A.setIdentity(rows, cols);
VERIFY(equalsIdentity(A));
VERIFY(equalsIdentity(MatrixType::Identity(rows, cols)));
}
void test_nullary()
{
CALL_SUBTEST_1( testMatrixType(Matrix2d()) );
CALL_SUBTEST_2( testMatrixType(MatrixXcf(50,50)) );
CALL_SUBTEST_3( testMatrixType(MatrixXf(5,7)) );
CALL_SUBTEST_4( testVectorType(VectorXd(51)) );
CALL_SUBTEST_5( testVectorType(VectorXd(41)) );
CALL_SUBTEST_6( testVectorType(Vector3d()) );
CALL_SUBTEST_7( testVectorType(VectorXf(51)) );
CALL_SUBTEST_8( testVectorType(VectorXf(41)) );
CALL_SUBTEST_9( testVectorType(Vector3f()) );
}