| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "sparse.h" |
| |
| template<typename SparseMatrixType> void sparse_product(const SparseMatrixType& ref) |
| { |
| typedef typename SparseMatrixType::Index Index; |
| const Index rows = ref.rows(); |
| const Index cols = ref.cols(); |
| typedef typename SparseMatrixType::Scalar Scalar; |
| enum { Flags = SparseMatrixType::Flags }; |
| |
| double density = std::max(8./(rows*cols), 0.01); |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| |
| // test matrix-matrix product |
| { |
| DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows); |
| DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows); |
| DenseMatrix refMat5 = DenseMatrix::Random(rows, rows); |
| DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); |
| SparseMatrixType m2(rows, rows); |
| SparseMatrixType m3(rows, rows); |
| SparseMatrixType m4(rows, rows); |
| initSparse<Scalar>(density, refMat2, m2); |
| initSparse<Scalar>(density, refMat3, m3); |
| initSparse<Scalar>(density, refMat4, m4); |
| VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); |
| VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); |
| VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); |
| VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); |
| |
| // sparse * dense |
| VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); |
| VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose()); |
| VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3); |
| VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); |
| |
| VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3)); |
| VERIFY_IS_APPROX(dm4=m2.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2.transpose()*(refMat3+refMat5)*0.5); |
| |
| // dense * sparse |
| VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); |
| VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); |
| VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); |
| VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); |
| |
| VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3); |
| } |
| |
| // test matrix - diagonal product |
| { |
| DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); |
| DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); |
| DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(rows)); |
| SparseMatrixType m2(rows, rows); |
| SparseMatrixType m3(rows, rows); |
| initSparse<Scalar>(density, refM2, m2); |
| initSparse<Scalar>(density, refM3, m3); |
| VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1); |
| VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1); |
| VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2); |
| VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose()); |
| } |
| |
| // test self adjoint products |
| { |
| DenseMatrix b = DenseMatrix::Random(rows, rows); |
| DenseMatrix x = DenseMatrix::Random(rows, rows); |
| DenseMatrix refX = DenseMatrix::Random(rows, rows); |
| DenseMatrix refUp = DenseMatrix::Zero(rows, rows); |
| DenseMatrix refLo = DenseMatrix::Zero(rows, rows); |
| DenseMatrix refS = DenseMatrix::Zero(rows, rows); |
| SparseMatrixType mUp(rows, rows); |
| SparseMatrixType mLo(rows, rows); |
| SparseMatrixType mS(rows, rows); |
| do { |
| initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); |
| } while (refUp.isZero()); |
| refLo = refUp.transpose().conjugate(); |
| mLo = mUp.transpose().conjugate(); |
| refS = refUp + refLo; |
| refS.diagonal() *= 0.5; |
| mS = mUp + mLo; |
| for (int k=0; k<mS.outerSize(); ++k) |
| for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it) |
| if (it.index() == k) |
| it.valueRef() *= 0.5; |
| |
| VERIFY_IS_APPROX(refS.adjoint(), refS); |
| VERIFY_IS_APPROX(mS.transpose().conjugate(), mS); |
| VERIFY_IS_APPROX(mS, refS); |
| VERIFY_IS_APPROX(x=mS*b, refX=refS*b); |
| |
| VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b); |
| VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b); |
| VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b); |
| } |
| } |
| |
| void test_sparse_product() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(8, 8)) ); |
| CALL_SUBTEST_2( sparse_product(SparseMatrix<std::complex<double> >(16, 16)) ); |
| CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(33, 33)) ); |
| |
| CALL_SUBTEST_3( sparse_product(DynamicSparseMatrix<double>(8, 8)) ); |
| } |
| } |