Added support for argmax/argmin
diff --git a/unsupported/Eigen/CXX11/Tensor b/unsupported/Eigen/CXX11/Tensor
index d1908a4..cbe4166 100644
--- a/unsupported/Eigen/CXX11/Tensor
+++ b/unsupported/Eigen/CXX11/Tensor
@@ -73,6 +73,7 @@
 #include "src/Tensor/TensorEvaluator.h"
 #include "src/Tensor/TensorExpr.h"
 #include "src/Tensor/TensorReduction.h"
+#include "src/Tensor/TensorArgMax.h"
 #include "src/Tensor/TensorConcatenation.h"
 #include "src/Tensor/TensorContraction.h"
 #include "src/Tensor/TensorContractionThreadPool.h"
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h b/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h
new file mode 100644
index 0000000..ee3bf7f
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h
@@ -0,0 +1,288 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
+//                    Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
+#define EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
+
+namespace Eigen {
+namespace internal {
+
+/** \class TensorIndexTuple
+  * \ingroup CXX11_Tensor_Module
+  *
+  * \brief Tensor + Index Tuple class.
+  *
+  *
+  */
+template<typename XprType>
+struct traits<TensorIndexTupleOp<XprType> > : public traits<XprType>
+{
+  typedef traits<XprType> XprTraits;
+  typedef typename XprTraits::StorageKind StorageKind;
+  typedef typename XprTraits::Index Index;
+  typedef Tuple<Index, typename XprTraits::Scalar> Scalar;
+  typedef typename XprType::Nested Nested;
+  typedef typename remove_reference<Nested>::type _Nested;
+  static const int NumDimensions = XprTraits::NumDimensions;
+  static const int Layout = XprTraits::Layout;
+};
+
+template<typename XprType>
+struct eval<TensorIndexTupleOp<XprType>, Eigen::Dense>
+{
+  typedef const TensorIndexTupleOp<XprType>& type;
+};
+
+template<typename XprType>
+struct nested<TensorIndexTupleOp<XprType>, 1,
+              typename eval<TensorIndexTupleOp<XprType> >::type>
+{
+  typedef TensorIndexTupleOp<XprType> type;
+};
+
+}  // end namespace internal
+
+template<typename XprType>
+class TensorIndexTupleOp : public TensorBase<TensorIndexTupleOp<XprType>, ReadOnlyAccessors>
+{
+  public:
+  typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Scalar Scalar;
+  typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+  typedef typename Eigen::internal::nested<TensorIndexTupleOp>::type Nested;
+  typedef typename Eigen::internal::traits<TensorIndexTupleOp>::StorageKind StorageKind;
+  typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Index Index;
+  typedef Tuple<Index, typename XprType::CoeffReturnType> CoeffReturnType;
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIndexTupleOp(const XprType& expr)
+      : m_xpr(expr) {}
+
+  EIGEN_DEVICE_FUNC
+  const typename internal::remove_all<typename XprType::Nested>::type&
+  expression() const { return m_xpr; }
+
+  protected:
+    typename XprType::Nested m_xpr;
+};
+
+// Eval as rvalue
+template<typename ArgType, typename Device>
+struct TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device>
+{
+  typedef TensorIndexTupleOp<ArgType> XprType;
+  typedef typename XprType::Index Index;
+  typedef typename XprType::Scalar Scalar;
+  typedef typename XprType::CoeffReturnType CoeffReturnType;
+
+  typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
+  static const int NumDims = internal::array_size<Dimensions>::value;
+
+  enum {
+    IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
+    PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false,
+    BlockAccess = false,
+    Layout = TensorEvaluator<ArgType, Device>::Layout,
+    CoordAccess = false,  // to be implemented
+  };
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+      : m_impl(op.expression(), device) { }
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
+    return m_impl.dimensions();
+  }
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+    m_impl.evalSubExprsIfNeeded(NULL);
+    return true;
+  }
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+    m_impl.cleanup();
+  }
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+  {
+    return CoeffReturnType(index, m_impl.coeff(index));
+  }
+
+  EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ protected:
+  TensorEvaluator<ArgType, Device> m_impl;
+};
+
+namespace internal {
+
+/** \class TensorTupleIndex
+  * \ingroup CXX11_Tensor_Module
+  *
+  * \brief Converts to Tensor<Tuple<Index, Scalar> > and reduces to Tensor<Index>.
+  *
+  */
+template<typename ReduceOp, typename Dims, typename XprType>
+struct traits<TensorTupleReducerOp<ReduceOp, Dims, XprType> > : public traits<XprType>
+{
+  typedef traits<XprType> XprTraits;
+  typedef typename XprTraits::StorageKind StorageKind;
+  typedef typename XprTraits::Index Index;
+  typedef Index Scalar;
+  typedef typename XprType::Nested Nested;
+  typedef typename remove_reference<Nested>::type _Nested;
+  static const int NumDimensions = XprTraits::NumDimensions;
+  static const int Layout = XprTraits::Layout;
+};
+
+template<typename ReduceOp, typename Dims, typename XprType>
+struct eval<TensorTupleReducerOp<ReduceOp, Dims, XprType>, Eigen::Dense>
+{
+  typedef const TensorTupleReducerOp<ReduceOp, Dims, XprType>& type;
+};
+
+template<typename ReduceOp, typename Dims, typename XprType>
+struct nested<TensorTupleReducerOp<ReduceOp, Dims, XprType>, 1,
+              typename eval<TensorTupleReducerOp<ReduceOp, Dims, XprType> >::type>
+{
+  typedef TensorTupleReducerOp<ReduceOp, Dims, XprType> type;
+};
+
+}  // end namespace internal
+
+template<typename ReduceOp, typename Dims, typename XprType>
+class TensorTupleReducerOp : public TensorBase<TensorTupleReducerOp<ReduceOp, Dims, XprType>, ReadOnlyAccessors>
+{
+  public:
+  typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Scalar Scalar;
+  typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+  typedef typename Eigen::internal::nested<TensorTupleReducerOp>::type Nested;
+  typedef typename Eigen::internal::traits<TensorTupleReducerOp>::StorageKind StorageKind;
+  typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Index Index;
+  typedef Index CoeffReturnType;
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorTupleReducerOp(const XprType& expr,
+                                                          const ReduceOp& reduce_op,
+                                                          const int return_dim,
+                                                          const Dims& reduce_dims)
+      : m_xpr(expr), m_reduce_op(reduce_op), m_return_dim(return_dim), m_reduce_dims(reduce_dims) {}
+
+  EIGEN_DEVICE_FUNC
+  const typename internal::remove_all<typename XprType::Nested>::type&
+  expression() const { return m_xpr; }
+
+  EIGEN_DEVICE_FUNC
+  const ReduceOp& reduce_op() const { return m_reduce_op; }
+
+  EIGEN_DEVICE_FUNC
+  const Dims& reduce_dims() const { return m_reduce_dims; }
+
+  EIGEN_DEVICE_FUNC
+  int return_dim() const { return m_return_dim; }
+
+  protected:
+    typename XprType::Nested m_xpr;
+    const ReduceOp m_reduce_op;
+    const int m_return_dim;
+    const Dims m_reduce_dims;
+};
+
+// Eval as rvalue
+template<typename ReduceOp, typename Dims, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Device>
+{
+  typedef TensorTupleReducerOp<ReduceOp, Dims, ArgType> XprType;
+  typedef typename XprType::Index Index;
+  typedef typename XprType::Scalar Scalar;
+  typedef typename XprType::CoeffReturnType CoeffReturnType;
+  typedef typename TensorIndexTupleOp<ArgType>::CoeffReturnType TupleType;
+  typedef typename TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Dimensions Dimensions;
+  typedef typename TensorEvaluator<const TensorIndexTupleOp<ArgType> , Device>::Dimensions InputDimensions;
+  static const int NumDims = internal::array_size<InputDimensions>::value;
+  typedef array<Index, NumDims> StrideDims;
+
+  enum {
+    IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
+    PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false,
+    BlockAccess = false,
+    Layout = TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Layout,
+    CoordAccess = false,  // to be implemented
+  };
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+      : m_orig_impl(op.expression(), device),
+        m_impl(op.expression().index_tuples().reduce(op.reduce_dims(), op.reduce_op()), device),
+        m_return_dim(op.return_dim()),
+        m_strides(gen_strides(m_orig_impl.dimensions())),
+        m_stride_mod(gen_stride_mod(m_orig_impl.dimensions())),
+        m_stride_div(gen_stride_div()) { }
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
+    return m_impl.dimensions();
+  }
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+    m_impl.evalSubExprsIfNeeded(NULL);
+    return true;
+  }
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+    m_impl.cleanup();
+  }
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
+    const TupleType v = m_impl.coeff(index);
+    return (m_return_dim < 0) ? v.first : (v.first % m_stride_mod) / m_stride_div;
+  }
+
+  EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ private:
+  EIGEN_DEVICE_FUNC StrideDims gen_strides(const InputDimensions& dims) {
+    StrideDims strides;
+    if (m_return_dim < 0) return strides;  // Won't be using these.
+    eigen_assert(m_return_dim < NumDims &&
+                 "Asking to convert index to a dimension outside of the rank");
+
+    // Calculate m_stride_div and m_stride_mod, which are used to
+    // calculate the value of an index w.r.t. the m_return_dim.
+    if (Layout == static_cast<int>(ColMajor)) {
+      strides[0] = 1;
+      for (int i = 1; i < NumDims; ++i) {
+        strides[i] = strides[i-1] * dims[i-1];
+      }
+    } else {
+      strides[NumDims-1] = 1;
+      for (int i = NumDims - 2; i >= 0; --i) {
+        strides[i] = strides[i+1] * dims[i+1];
+      }
+    }
+    return strides;
+  }
+
+  EIGEN_DEVICE_FUNC Index gen_stride_mod(const InputDimensions& dims) {
+    if (Layout == static_cast<int>(ColMajor)) {
+      return (m_return_dim < NumDims - 1) ? m_strides[m_return_dim + 1] : dims.TotalSize();
+    } else {
+      return (m_return_dim > 0) ? m_strides[m_return_dim - 1] : dims.TotalSize();
+    }
+  }
+
+  EIGEN_DEVICE_FUNC Index gen_stride_div() {
+    return m_strides[m_return_dim];
+  }
+
+ protected:
+  TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device> m_orig_impl;
+  TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device> m_impl;
+  const int m_return_dim;
+  const StrideDims m_strides;
+  const Index m_stride_mod;
+  const Index m_stride_div;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
index 0e5e4b4..477e4a1 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
@@ -363,6 +363,58 @@
       return TensorReductionOp<internal::MinReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MinReducer<CoeffReturnType>());
     }
 
+   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+    const TensorTupleReducerOp<
+      internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
+      const array<Index, NumDimensions>, const Derived>
+    argmax() const {
+      array<Index, NumDimensions> in_dims;
+      for (int d = 0; d < NumDimensions; ++d) in_dims[d] = d;
+      return TensorTupleReducerOp<
+        internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
+        const array<Index, NumDimensions>,
+        const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims);
+    }
+
+    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+    const TensorTupleReducerOp<
+      internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
+      const array<Index, NumDimensions>, const Derived>
+    argmin() const {
+      array<Index, NumDimensions> in_dims;
+      for (int d = 0; d < NumDimensions; ++d) in_dims[d] = d;
+      return TensorTupleReducerOp<
+        internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
+        const array<Index, NumDimensions>,
+        const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims);
+    }
+
+    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+    const TensorTupleReducerOp<
+      internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
+      const array<Index, 1>, const Derived>
+    argmax(const int return_dim) const {
+      array<Index, 1> in_dims;
+      in_dims[0] = return_dim;
+      return TensorTupleReducerOp<
+        internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
+        const array<Index, 1>,
+        const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims);
+    }
+
+    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+    const TensorTupleReducerOp<
+      internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
+      const array<Index, 1>, const Derived>
+    argmin(const int return_dim) const {
+      array<Index, 1> in_dims;
+      in_dims[0] = return_dim;
+      return TensorTupleReducerOp<
+        internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
+        const array<Index, 1>,
+        const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims);
+    }
+
     template <typename Reducer, typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
     const TensorReductionOp<Reducer, const Dims, const Derived>
     reduce(const Dims& dims, const Reducer& reducer) const {
@@ -483,6 +535,13 @@
       return TensorInflationOp<const Strides, const Derived>(derived(), strides);
     }
 
+    // Returns a tensor containing index/value tuples
+    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+    const TensorIndexTupleOp<const Derived>
+    index_tuples() const {
+      return TensorIndexTupleOp<const Derived>(derived());
+    }
+
     // Support for custom unary and binary operations
     template <typename CustomUnaryFunc>
     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h b/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
index 17b0e61..c22444e 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
@@ -23,6 +23,8 @@
 template<typename BinaryOp, typename LeftXprType, typename RightXprType> class TensorCwiseBinaryOp;
 template<typename IfXprType, typename ThenXprType, typename ElseXprType> class TensorSelectOp;
 template<typename Op, typename Dims, typename XprType> class TensorReductionOp;
+template<typename XprType> class TensorIndexTupleOp;
+template<typename ReduceOp, typename Dims, typename XprType> class TensorTupleReducerOp;
 template<typename Axis, typename LeftXprType, typename RightXprType> class TensorConcatenationOp;
 template<typename Dimensions, typename LeftXprType, typename RightXprType> class TensorContractionOp;
 template<typename TargetType, typename XprType> class TensorConversionOp;
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h b/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h
index d9061c2..ed25939 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h
@@ -219,6 +219,40 @@
 };
 
 
+// Argmin/Argmax reducers
+template <typename T> struct ArgMaxTupleReducer
+{
+  static const bool PacketAccess = false;
+  static const bool IsStateful = false;
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const {
+    if (t.second > accum->second) { *accum = t; }
+  }
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
+    return T(0, NumTraits<typename T::second_type>::lowest());
+  }
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const {
+    return accum;
+  }
+};
+
+template <typename T> struct ArgMinTupleReducer
+{
+  static const bool PacketAccess = false;
+  static const bool IsStateful = false;
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T& t, T* accum) const {
+    if (t.second < accum->second) { *accum = t; }
+  }
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
+    return T(0, NumTraits<typename T::second_type>::highest());
+  }
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const {
+    return accum;
+  }
+};
+
+
 // Random number generation
 namespace {
 #ifdef __CUDA_ARCH__
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h b/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h
index 78feb85..7dfa047 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h
@@ -31,6 +31,60 @@
   static const size_t size = 1;
 };
 
+
+
+
+#if defined(EIGEN_HAS_CONSTEXPR)
+#define EIGEN_CONSTEXPR constexpr
+#else
+#define EIGEN_CONSTEXPR
+#endif
+
+// Tuple mimics std::pair but works on e.g. nvcc.
+template <typename U, typename V> struct Tuple {
+ public:
+  U first;
+  V second;
+
+  typedef U first_type;
+  typedef V second_type;
+
+  EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+  Tuple() : first(), second() {}
+
+  EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+  Tuple(const U& f, const V& s) : first(f), second(s) {}
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+  Tuple& operator= (const Tuple& rhs) {
+    if (&rhs == this) return *this;
+    first = rhs.first;
+    second = rhs.second;
+    return *this;
+  }
+
+  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+  void swap(Tuple& rhs) {
+    using numext::swap;
+    swap(first, rhs.first);
+    swap(second, rhs.second);
+  }
+};
+
+template <typename U, typename V>
+EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+bool operator==(const Tuple<U, V>& x, const Tuple<U, V>& y) {
+  return (x.first == y.first && x.second == y.second);
+}
+
+template <typename U, typename V>
+EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+bool operator!=(const Tuple<U, V>& x, const Tuple<U, V>& y) {
+  return !(x == y);
+}
+
+#undef EIGEN_CONSTEXPR
+
 }  // namespace Eigen
 
 #endif  // EIGEN_CXX11_TENSOR_TENSOR_META_H
diff --git a/unsupported/test/CMakeLists.txt b/unsupported/test/CMakeLists.txt
index 7c8fb8d..b161cb3 100644
--- a/unsupported/test/CMakeLists.txt
+++ b/unsupported/test/CMakeLists.txt
@@ -130,6 +130,7 @@
   ei_add_test(cxx11_tensor_image_patch "-std=c++0x")
   ei_add_test(cxx11_tensor_volume_patch "-std=c++0x")
   ei_add_test(cxx11_tensor_reduction "-std=c++0x")
+  ei_add_test(cxx11_tensor_argmax "-std=c++0x")
   ei_add_test(cxx11_tensor_shuffling "-std=c++0x")
   ei_add_test(cxx11_tensor_striding "-std=c++0x")
   ei_add_test(cxx11_tensor_thread_pool "-std=c++0x")
@@ -148,5 +149,6 @@
 #  ei_add_test(cxx11_tensor_contract_cuda "-std=c++0x")
 #  ei_add_test(cxx11_tensor_reduction_cuda "-std=c++0x")
 #  ei_add_test(cxx11_tensor_random_cuda "-std=c++0x")
+#  ei_add_test(cxx11_tensor_argmax_cuda "-std=c++0x")
 
 endif()
diff --git a/unsupported/test/cxx11_tensor_argmax.cpp b/unsupported/test/cxx11_tensor_argmax.cpp
new file mode 100644
index 0000000..4c53240
--- /dev/null
+++ b/unsupported/test/cxx11_tensor_argmax.cpp
@@ -0,0 +1,294 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Eugene Brevdo <ebrevdo@google.com>
+//                    Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+
+#include <Eigen/CXX11/Tensor>
+
+using Eigen::Tensor;
+using Eigen::array;
+using Eigen::Tuple;
+
+template <int DataLayout>
+static void test_simple_index_tuples()
+{
+  Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+  tensor.setRandom();
+  tensor = (tensor + tensor.constant(0.5)).log();
+
+  Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
+  index_tuples = tensor.index_tuples();
+
+  for (DenseIndex n = 0; n < 2*3*5*7; ++n) {
+    const Tuple<DenseIndex, float>& v = index_tuples.coeff(n);
+    VERIFY_IS_EQUAL(v.first, n);
+    VERIFY_IS_EQUAL(v.second, tensor.coeff(n));
+  }
+}
+
+template <int DataLayout>
+static void test_index_tuples_dim()
+{
+  Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+  tensor.setRandom();
+  tensor = (tensor + tensor.constant(0.5)).log();
+
+  Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
+
+  index_tuples = tensor.index_tuples();
+
+  for (Eigen::DenseIndex n = 0; n < tensor.size(); ++n) {
+    const Tuple<DenseIndex, float>& v = index_tuples(n); //(i, j, k, l);
+    VERIFY_IS_EQUAL(v.first, n);
+    VERIFY_IS_EQUAL(v.second, tensor(n));
+  }
+}
+
+template <int DataLayout>
+static void test_argmax_tuple_reducer()
+{
+  Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+  tensor.setRandom();
+  tensor = (tensor + tensor.constant(0.5)).log();
+
+  Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
+  index_tuples = tensor.index_tuples();
+
+  Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced(1);
+  DimensionList<DenseIndex, 4> dims;
+  reduced = index_tuples.reduce(
+      dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float>>());
+
+  Tensor<float, 1, DataLayout> maxi = tensor.maximum();
+
+  VERIFY_IS_EQUAL(maxi(0), reduced(0).second);
+
+  array<DenseIndex, 3> reduce_dims;
+  for (int d = 0; d < 3; ++d) reduce_dims[d] = d;
+  Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7);
+  reduced_by_dims = index_tuples.reduce(
+      reduce_dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float>>());
+
+  Tensor<float, 1, DataLayout> max_by_dims = tensor.maximum(reduce_dims);
+
+  for (int l = 0; l < 7; ++l) {
+    VERIFY_IS_EQUAL(max_by_dims(l), reduced_by_dims(l).second);
+  }
+}
+
+template <int DataLayout>
+static void test_argmin_tuple_reducer()
+{
+  Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+  tensor.setRandom();
+  tensor = (tensor + tensor.constant(0.5)).log();
+
+  Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
+  index_tuples = tensor.index_tuples();
+
+  Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced(1);
+  DimensionList<DenseIndex, 4> dims;
+  reduced = index_tuples.reduce(
+      dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float>>());
+
+  Tensor<float, 1, DataLayout> mini = tensor.minimum();
+
+  VERIFY_IS_EQUAL(mini(0), reduced(0).second);
+
+  array<DenseIndex, 3> reduce_dims;
+  for (int d = 0; d < 3; ++d) reduce_dims[d] = d;
+  Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7);
+  reduced_by_dims = index_tuples.reduce(
+      reduce_dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float>>());
+
+  Tensor<float, 1, DataLayout> min_by_dims = tensor.minimum(reduce_dims);
+
+  for (int l = 0; l < 7; ++l) {
+    VERIFY_IS_EQUAL(min_by_dims(l), reduced_by_dims(l).second);
+  }
+}
+
+template <int DataLayout>
+static void test_simple_argmax()
+{
+  Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+  tensor.setRandom();
+  tensor = (tensor + tensor.constant(0.5)).log();
+  tensor(0,0,0,0) = 10.0;
+
+  Tensor<DenseIndex, 1, DataLayout> tensor_argmax(1);
+
+  tensor_argmax = tensor.argmax();
+
+  VERIFY_IS_EQUAL(tensor_argmax(0), 0);
+
+  tensor(1,2,4,6) = 20.0;
+
+  tensor_argmax = tensor.argmax();
+
+  VERIFY_IS_EQUAL(tensor_argmax(0), 2*3*5*7 - 1);
+}
+
+template <int DataLayout>
+static void test_simple_argmin()
+{
+  Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+  tensor.setRandom();
+  tensor = (tensor + tensor.constant(0.5)).log();
+  tensor(0,0,0,0) = -10.0;
+
+  Tensor<DenseIndex, 1, DataLayout> tensor_argmin(1);
+
+  tensor_argmin = tensor.argmin();
+
+  VERIFY_IS_EQUAL(tensor_argmin(0), 0);
+
+  tensor(1,2,4,6) = -20.0;
+
+  tensor_argmin = tensor.argmin();
+
+  VERIFY_IS_EQUAL(tensor_argmin(0), 2*3*5*7 - 1);
+}
+
+template <int DataLayout>
+static void test_argmax_dim()
+{
+  Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+  std::vector<int> dims {2, 3, 5, 7};
+
+  for (int dim = 0; dim < 4; ++dim) {
+    tensor.setRandom();
+    tensor = (tensor + tensor.constant(0.5)).log();
+
+    Tensor<DenseIndex, 3, DataLayout> tensor_argmax;
+    array<DenseIndex, 4> ix;
+    for (int i = 0; i < 2; ++i) {
+      for (int j = 0; j < 3; ++j) {
+        for (int k = 0; k < 5; ++k) {
+          for (int l = 0; l < 7; ++l) {
+            ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+            if (ix[dim] != 0) continue;
+            // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
+            tensor(ix) = 10.0;
+          }
+        }
+      }
+    }
+
+    tensor_argmax = tensor.argmax(dim);
+
+    VERIFY_IS_EQUAL(tensor_argmax.dimensions().TotalSize(),
+                    size_t(2*3*5*7 / tensor.dimension(dim)));
+    for (size_t n = 0; n < tensor_argmax.dimensions().TotalSize(); ++n) {
+      // Expect max to be in the first index of the reduced dimension
+      VERIFY_IS_EQUAL(tensor_argmax.data()[n], 0);
+    }
+
+    for (int i = 0; i < 2; ++i) {
+      for (int j = 0; j < 3; ++j) {
+        for (int k = 0; k < 5; ++k) {
+          for (int l = 0; l < 7; ++l) {
+            ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+            if (ix[dim] != tensor.dimension(dim) - 1) continue;
+            // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
+            tensor(ix) = 20.0;
+          }
+        }
+      }
+    }
+
+    tensor_argmax = tensor.argmax(dim);
+
+    VERIFY_IS_EQUAL(tensor_argmax.dimensions().TotalSize(),
+                    size_t(2*3*5*7 / tensor.dimension(dim)));
+    for (size_t n = 0; n < tensor_argmax.dimensions().TotalSize(); ++n) {
+      // Expect max to be in the last index of the reduced dimension
+      VERIFY_IS_EQUAL(tensor_argmax.data()[n], tensor.dimension(dim) - 1);
+    }
+  }
+}
+
+template <int DataLayout>
+static void test_argmin_dim()
+{
+  Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+  std::vector<int> dims {2, 3, 5, 7};
+
+  for (int dim = 0; dim < 4; ++dim) {
+    tensor.setRandom();
+    tensor = (tensor + tensor.constant(0.5)).log();
+
+    Tensor<DenseIndex, 3, DataLayout> tensor_argmin;
+    array<DenseIndex, 4> ix;
+    for (int i = 0; i < 2; ++i) {
+      for (int j = 0; j < 3; ++j) {
+        for (int k = 0; k < 5; ++k) {
+          for (int l = 0; l < 7; ++l) {
+            ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+            if (ix[dim] != 0) continue;
+            // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = -10.0
+            tensor(ix) = -10.0;
+          }
+        }
+      }
+    }
+
+    tensor_argmin = tensor.argmin(dim);
+
+    VERIFY_IS_EQUAL(tensor_argmin.dimensions().TotalSize(),
+                    size_t(2*3*5*7 / tensor.dimension(dim)));
+    for (size_t n = 0; n < tensor_argmin.dimensions().TotalSize(); ++n) {
+      // Expect min to be in the first index of the reduced dimension
+      VERIFY_IS_EQUAL(tensor_argmin.data()[n], 0);
+    }
+
+    for (int i = 0; i < 2; ++i) {
+      for (int j = 0; j < 3; ++j) {
+        for (int k = 0; k < 5; ++k) {
+          for (int l = 0; l < 7; ++l) {
+            ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+            if (ix[dim] != tensor.dimension(dim) - 1) continue;
+            // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = -20.0
+            tensor(ix) = -20.0;
+          }
+        }
+      }
+    }
+
+    tensor_argmin = tensor.argmin(dim);
+
+    VERIFY_IS_EQUAL(tensor_argmin.dimensions().TotalSize(),
+                    size_t(2*3*5*7 / tensor.dimension(dim)));
+    for (size_t n = 0; n < tensor_argmin.dimensions().TotalSize(); ++n) {
+      // Expect min to be in the last index of the reduced dimension
+      VERIFY_IS_EQUAL(tensor_argmin.data()[n], tensor.dimension(dim) - 1);
+    }
+  }
+}
+
+void test_cxx11_tensor_argmax()
+{
+  CALL_SUBTEST(test_simple_index_tuples<RowMajor>());
+  CALL_SUBTEST(test_simple_index_tuples<ColMajor>());
+  CALL_SUBTEST(test_index_tuples_dim<RowMajor>());
+  CALL_SUBTEST(test_index_tuples_dim<ColMajor>());
+  CALL_SUBTEST(test_argmax_tuple_reducer<RowMajor>());
+  CALL_SUBTEST(test_argmax_tuple_reducer<ColMajor>());
+  CALL_SUBTEST(test_argmin_tuple_reducer<RowMajor>());
+  CALL_SUBTEST(test_argmin_tuple_reducer<ColMajor>());
+  CALL_SUBTEST(test_simple_argmax<RowMajor>());
+  CALL_SUBTEST(test_simple_argmax<ColMajor>());
+  CALL_SUBTEST(test_simple_argmin<RowMajor>());
+  CALL_SUBTEST(test_simple_argmin<ColMajor>());
+  CALL_SUBTEST(test_argmax_dim<RowMajor>());
+  CALL_SUBTEST(test_argmax_dim<ColMajor>());
+  CALL_SUBTEST(test_argmin_dim<RowMajor>());
+  CALL_SUBTEST(test_argmin_dim<ColMajor>());
+}
diff --git a/unsupported/test/cxx11_tensor_argmax_cuda.cpp b/unsupported/test/cxx11_tensor_argmax_cuda.cpp
new file mode 100644
index 0000000..d37490d
--- /dev/null
+++ b/unsupported/test/cxx11_tensor_argmax_cuda.cpp
@@ -0,0 +1,241 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+// TODO(mdevin): Free the cuda memory.
+
+#define EIGEN_TEST_FUNC cxx11_tensor_cuda
+#define EIGEN_USE_GPU
+
+#include "main.h"
+#include <unsupported/Eigen/CXX11/Tensor>
+
+using Eigen::Tensor;
+
+template <int Layout>
+void test_cuda_simple_argmax()
+{
+  Tensor<double, 3, Layout> in(Eigen::array<DenseIndex, 3>(72,53,97));
+  Tensor<DenseIndex, 1, Layout> out_max(Eigen::array<DenseIndex, 1>(1));
+  Tensor<DenseIndex, 1, Layout> out_min(Eigen::array<DenseIndex, 1>(1));
+  in.setRandom();
+  in *= in.constant(100.0);
+  in(0, 0, 0) = -1000.0;
+  in(71, 52, 96) = 1000.0;
+
+  std::size_t in_bytes = in.size() * sizeof(double);
+  std::size_t out_bytes = out_max.size() * sizeof(DenseIndex);
+
+  double* d_in;
+  DenseIndex* d_out_max;
+  DenseIndex* d_out_min;
+  cudaMalloc((void**)(&d_in), in_bytes);
+  cudaMalloc((void**)(&d_out_max), out_bytes);
+  cudaMalloc((void**)(&d_out_min), out_bytes);
+
+  cudaMemcpy(d_in, in.data(), in_bytes, cudaMemcpyHostToDevice);
+
+  Eigen::CudaStreamDevice stream;
+  Eigen::GpuDevice gpu_device(&stream);
+
+  Eigen::TensorMap<Eigen::Tensor<double, 3, Layout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 3>(72,53,97));
+  Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_max(d_out_max, Eigen::array<DenseIndex, 1>(1));
+  Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_min(d_out_min, Eigen::array<DenseIndex, 1>(1));
+
+  gpu_out_max.device(gpu_device) = gpu_in.argmax();
+  gpu_out_min.device(gpu_device) = gpu_in.argmin();
+
+  assert(cudaMemcpyAsync(out_max.data(), d_out_max, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
+  assert(cudaMemcpyAsync(out_min.data(), d_out_min, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
+  assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
+
+  VERIFY_IS_EQUAL(out_max(Eigen::array<DenseIndex, 1>(0)), 72*53*97 - 1);
+  VERIFY_IS_EQUAL(out_min(Eigen::array<DenseIndex, 1>(0)), 0);
+}
+
+template <int DataLayout>
+void test_cuda_argmax_dim()
+{
+  Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+  std::vector<int> dims;
+  dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
+
+  for (int dim = 0; dim < 4; ++dim) {
+    tensor.setRandom();
+    tensor = (tensor + tensor.constant(0.5)).log();
+
+    array<DenseIndex, 3> out_shape;
+    for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
+
+    Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
+
+    array<DenseIndex, 4> ix;
+    for (int i = 0; i < 2; ++i) {
+      for (int j = 0; j < 3; ++j) {
+        for (int k = 0; k < 5; ++k) {
+          for (int l = 0; l < 7; ++l) {
+            ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+            if (ix[dim] != 0) continue;
+            // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
+            tensor(ix) = 10.0;
+          }
+        }
+      }
+    }
+
+    std::size_t in_bytes = tensor.size() * sizeof(float);
+    std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
+
+    float* d_in;
+    DenseIndex* d_out;
+    cudaMalloc((void**)(&d_in), in_bytes);
+    cudaMalloc((void**)(&d_out), out_bytes);
+
+    cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
+
+    Eigen::CudaStreamDevice stream;
+    Eigen::GpuDevice gpu_device(&stream);
+
+    Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
+    Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
+
+    gpu_out.device(gpu_device) = gpu_in.argmax(dim);
+
+    assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
+    assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
+
+    VERIFY_IS_EQUAL(tensor_arg.dimensions().TotalSize(),
+                    size_t(2*3*5*7 / tensor.dimension(dim)));
+
+    for (size_t n = 0; n < tensor_arg.dimensions().TotalSize(); ++n) {
+      // Expect max to be in the first index of the reduced dimension
+      VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
+    }
+
+    for (int i = 0; i < 2; ++i) {
+      for (int j = 0; j < 3; ++j) {
+        for (int k = 0; k < 5; ++k) {
+          for (int l = 0; l < 7; ++l) {
+            ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+            if (ix[dim] != tensor.dimension(dim) - 1) continue;
+            // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
+            tensor(ix) = 20.0;
+          }
+        }
+      }
+    }
+
+    cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
+
+    gpu_out.device(gpu_device) = gpu_in.argmax(dim);
+
+    assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
+    assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
+
+    for (size_t n = 0; n < tensor_arg.dimensions().TotalSize(); ++n) {
+      // Expect max to be in the last index of the reduced dimension
+      VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
+    }
+  }
+}
+
+template <int DataLayout>
+void test_cuda_argmin_dim()
+{
+  Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+  std::vector<int> dims;
+  dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
+
+  for (int dim = 0; dim < 4; ++dim) {
+    tensor.setRandom();
+    tensor = (tensor + tensor.constant(0.5)).log();
+
+    array<DenseIndex, 3> out_shape;
+    for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
+
+    Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
+
+    array<DenseIndex, 4> ix;
+    for (int i = 0; i < 2; ++i) {
+      for (int j = 0; j < 3; ++j) {
+        for (int k = 0; k < 5; ++k) {
+          for (int l = 0; l < 7; ++l) {
+            ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+            if (ix[dim] != 0) continue;
+            // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
+            tensor(ix) = -10.0;
+          }
+        }
+      }
+    }
+
+    std::size_t in_bytes = tensor.size() * sizeof(float);
+    std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
+
+    float* d_in;
+    DenseIndex* d_out;
+    cudaMalloc((void**)(&d_in), in_bytes);
+    cudaMalloc((void**)(&d_out), out_bytes);
+
+    cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
+
+    Eigen::CudaStreamDevice stream;
+    Eigen::GpuDevice gpu_device(&stream);
+
+    Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
+    Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
+
+    gpu_out.device(gpu_device) = gpu_in.argmin(dim);
+
+    assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
+    assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
+
+    VERIFY_IS_EQUAL(tensor_arg.dimensions().TotalSize(),
+                    size_t(2*3*5*7 / tensor.dimension(dim)));
+
+    for (size_t n = 0; n < tensor_arg.dimensions().TotalSize(); ++n) {
+      // Expect min to be in the first index of the reduced dimension
+      VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
+    }
+
+    for (int i = 0; i < 2; ++i) {
+      for (int j = 0; j < 3; ++j) {
+        for (int k = 0; k < 5; ++k) {
+          for (int l = 0; l < 7; ++l) {
+            ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+            if (ix[dim] != tensor.dimension(dim) - 1) continue;
+            // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
+            tensor(ix) = -20.0;
+          }
+        }
+      }
+    }
+
+    cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
+
+    gpu_out.device(gpu_device) = gpu_in.argmin(dim);
+
+    assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
+    assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
+
+    for (size_t n = 0; n < tensor_arg.dimensions().TotalSize(); ++n) {
+      // Expect max to be in the last index of the reduced dimension
+      VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
+    }
+  }
+}
+
+void test_cxx11_tensor_cuda()
+{
+  CALL_SUBTEST(test_cuda_simple_argmax<RowMajor>());
+  CALL_SUBTEST(test_cuda_simple_argmax<ColMajor>());
+  CALL_SUBTEST(test_cuda_argmax_dim<RowMajor>());
+  CALL_SUBTEST(test_cuda_argmax_dim<ColMajor>());
+  CALL_SUBTEST(test_cuda_argmin_dim<RowMajor>());
+  CALL_SUBTEST(test_cuda_argmin_dim<ColMajor>());
+}