| *> \brief \b ZLARFG | 
 | * | 
 | *  =========== DOCUMENTATION =========== | 
 | * | 
 | * Online html documentation available at  | 
 | *            http://www.netlib.org/lapack/explore-html/  | 
 | * | 
 | *> \htmlonly | 
 | *> Download ZLARFG + dependencies  | 
 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfg.f">  | 
 | *> [TGZ]</a>  | 
 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfg.f">  | 
 | *> [ZIP]</a>  | 
 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfg.f">  | 
 | *> [TXT]</a> | 
 | *> \endhtmlonly  | 
 | * | 
 | *  Definition: | 
 | *  =========== | 
 | * | 
 | *       SUBROUTINE ZLARFG( N, ALPHA, X, INCX, TAU ) | 
 | *  | 
 | *       .. Scalar Arguments .. | 
 | *       INTEGER            INCX, N | 
 | *       COMPLEX*16         ALPHA, TAU | 
 | *       .. | 
 | *       .. Array Arguments .. | 
 | *       COMPLEX*16         X( * ) | 
 | *       .. | 
 | *   | 
 | * | 
 | *> \par Purpose: | 
 | *  ============= | 
 | *> | 
 | *> \verbatim | 
 | *> | 
 | *> ZLARFG generates a complex elementary reflector H of order n, such | 
 | *> that | 
 | *> | 
 | *>       H**H * ( alpha ) = ( beta ),   H**H * H = I. | 
 | *>              (   x   )   (   0  ) | 
 | *> | 
 | *> where alpha and beta are scalars, with beta real, and x is an | 
 | *> (n-1)-element complex vector. H is represented in the form | 
 | *> | 
 | *>       H = I - tau * ( 1 ) * ( 1 v**H ) , | 
 | *>                     ( v ) | 
 | *> | 
 | *> where tau is a complex scalar and v is a complex (n-1)-element | 
 | *> vector. Note that H is not hermitian. | 
 | *> | 
 | *> If the elements of x are all zero and alpha is real, then tau = 0 | 
 | *> and H is taken to be the unit matrix. | 
 | *> | 
 | *> Otherwise  1 <= real(tau) <= 2  and  abs(tau-1) <= 1 . | 
 | *> \endverbatim | 
 | * | 
 | *  Arguments: | 
 | *  ========== | 
 | * | 
 | *> \param[in] N | 
 | *> \verbatim | 
 | *>          N is INTEGER | 
 | *>          The order of the elementary reflector. | 
 | *> \endverbatim | 
 | *> | 
 | *> \param[in,out] ALPHA | 
 | *> \verbatim | 
 | *>          ALPHA is COMPLEX*16 | 
 | *>          On entry, the value alpha. | 
 | *>          On exit, it is overwritten with the value beta. | 
 | *> \endverbatim | 
 | *> | 
 | *> \param[in,out] X | 
 | *> \verbatim | 
 | *>          X is COMPLEX*16 array, dimension | 
 | *>                         (1+(N-2)*abs(INCX)) | 
 | *>          On entry, the vector x. | 
 | *>          On exit, it is overwritten with the vector v. | 
 | *> \endverbatim | 
 | *> | 
 | *> \param[in] INCX | 
 | *> \verbatim | 
 | *>          INCX is INTEGER | 
 | *>          The increment between elements of X. INCX > 0. | 
 | *> \endverbatim | 
 | *> | 
 | *> \param[out] TAU | 
 | *> \verbatim | 
 | *>          TAU is COMPLEX*16 | 
 | *>          The value tau. | 
 | *> \endverbatim | 
 | * | 
 | *  Authors: | 
 | *  ======== | 
 | * | 
 | *> \author Univ. of Tennessee  | 
 | *> \author Univ. of California Berkeley  | 
 | *> \author Univ. of Colorado Denver  | 
 | *> \author NAG Ltd.  | 
 | * | 
 | *> \date November 2011 | 
 | * | 
 | *> \ingroup complex16OTHERauxiliary | 
 | * | 
 | *  ===================================================================== | 
 |       SUBROUTINE ZLARFG( N, ALPHA, X, INCX, TAU ) | 
 | * | 
 | *  -- LAPACK auxiliary routine (version 3.4.0) -- | 
 | *  -- LAPACK is a software package provided by Univ. of Tennessee,    -- | 
 | *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | 
 | *     November 2011 | 
 | * | 
 | *     .. Scalar Arguments .. | 
 |       INTEGER            INCX, N | 
 |       COMPLEX*16         ALPHA, TAU | 
 | *     .. | 
 | *     .. Array Arguments .. | 
 |       COMPLEX*16         X( * ) | 
 | *     .. | 
 | * | 
 | *  ===================================================================== | 
 | * | 
 | *     .. Parameters .. | 
 |       DOUBLE PRECISION   ONE, ZERO | 
 |       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 ) | 
 | *     .. | 
 | *     .. Local Scalars .. | 
 |       INTEGER            J, KNT | 
 |       DOUBLE PRECISION   ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM | 
 | *     .. | 
 | *     .. External Functions .. | 
 |       DOUBLE PRECISION   DLAMCH, DLAPY3, DZNRM2 | 
 |       COMPLEX*16         ZLADIV | 
 |       EXTERNAL           DLAMCH, DLAPY3, DZNRM2, ZLADIV | 
 | *     .. | 
 | *     .. Intrinsic Functions .. | 
 |       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, SIGN | 
 | *     .. | 
 | *     .. External Subroutines .. | 
 |       EXTERNAL           ZDSCAL, ZSCAL | 
 | *     .. | 
 | *     .. Executable Statements .. | 
 | * | 
 |       IF( N.LE.0 ) THEN | 
 |          TAU = ZERO | 
 |          RETURN | 
 |       END IF | 
 | * | 
 |       XNORM = DZNRM2( N-1, X, INCX ) | 
 |       ALPHR = DBLE( ALPHA ) | 
 |       ALPHI = DIMAG( ALPHA ) | 
 | * | 
 |       IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN | 
 | * | 
 | *        H  =  I | 
 | * | 
 |          TAU = ZERO | 
 |       ELSE | 
 | * | 
 | *        general case | 
 | * | 
 |          BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) | 
 |          SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' ) | 
 |          RSAFMN = ONE / SAFMIN | 
 | * | 
 |          KNT = 0 | 
 |          IF( ABS( BETA ).LT.SAFMIN ) THEN | 
 | * | 
 | *           XNORM, BETA may be inaccurate; scale X and recompute them | 
 | * | 
 |    10       CONTINUE | 
 |             KNT = KNT + 1 | 
 |             CALL ZDSCAL( N-1, RSAFMN, X, INCX ) | 
 |             BETA = BETA*RSAFMN | 
 |             ALPHI = ALPHI*RSAFMN | 
 |             ALPHR = ALPHR*RSAFMN | 
 |             IF( ABS( BETA ).LT.SAFMIN ) | 
 |      $         GO TO 10 | 
 | * | 
 | *           New BETA is at most 1, at least SAFMIN | 
 | * | 
 |             XNORM = DZNRM2( N-1, X, INCX ) | 
 |             ALPHA = DCMPLX( ALPHR, ALPHI ) | 
 |             BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) | 
 |          END IF | 
 |          TAU = DCMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA ) | 
 |          ALPHA = ZLADIV( DCMPLX( ONE ), ALPHA-BETA ) | 
 |          CALL ZSCAL( N-1, ALPHA, X, INCX ) | 
 | * | 
 | *        If ALPHA is subnormal, it may lose relative accuracy | 
 | * | 
 |          DO 20 J = 1, KNT | 
 |             BETA = BETA*SAFMIN | 
 |  20      CONTINUE | 
 |          ALPHA = BETA | 
 |       END IF | 
 | * | 
 |       RETURN | 
 | * | 
 | *     End of ZLARFG | 
 | * | 
 |       END |