| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com> |
| // Copyright (C) 2009-2010 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_REVERSE_H |
| #define EIGEN_REVERSE_H |
| |
| /** \array_module \ingroup Array_Module |
| * |
| * \class Reverse |
| * |
| * \brief Expression of the reverse of a vector or matrix |
| * |
| * \param MatrixType the type of the object of which we are taking the reverse |
| * |
| * This class represents an expression of the reverse of a vector. |
| * It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse() |
| * and most of the time this is the only way it is used. |
| * |
| * \sa MatrixBase::reverse(), VectorwiseOp::reverse() |
| */ |
| template<typename MatrixType, int Direction> |
| struct ei_traits<Reverse<MatrixType, Direction> > |
| : ei_traits<MatrixType> |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename ei_traits<MatrixType>::StorageKind StorageKind; |
| typedef typename ei_traits<MatrixType>::XprKind XprKind; |
| typedef typename ei_nested<MatrixType>::type MatrixTypeNested; |
| typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested; |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| |
| // let's enable LinearAccess only with vectorization because of the product overhead |
| LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) ) |
| ? LinearAccessBit : 0, |
| |
| Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | PacketAccessBit | LinearAccess), |
| |
| CoeffReadCost = _MatrixTypeNested::CoeffReadCost |
| }; |
| }; |
| |
| template<typename PacketScalar, bool ReversePacket> struct ei_reverse_packet_cond |
| { |
| static inline PacketScalar run(const PacketScalar& x) { return ei_preverse(x); } |
| }; |
| template<typename PacketScalar> struct ei_reverse_packet_cond<PacketScalar,false> |
| { |
| static inline PacketScalar run(const PacketScalar& x) { return x; } |
| }; |
| |
| template<typename MatrixType, int Direction> class Reverse |
| : public ei_dense_xpr_base< Reverse<MatrixType, Direction> >::type |
| { |
| public: |
| |
| typedef typename ei_dense_xpr_base<Reverse>::type Base; |
| EIGEN_DENSE_PUBLIC_INTERFACE(Reverse) |
| using Base::IsRowMajor; |
| |
| protected: |
| enum { |
| PacketSize = ei_packet_traits<Scalar>::size, |
| IsColMajor = !IsRowMajor, |
| ReverseRow = (Direction == Vertical) || (Direction == BothDirections), |
| ReverseCol = (Direction == Horizontal) || (Direction == BothDirections), |
| OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, |
| OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1, |
| ReversePacket = (Direction == BothDirections) |
| || ((Direction == Vertical) && IsColMajor) |
| || ((Direction == Horizontal) && IsRowMajor) |
| }; |
| typedef ei_reverse_packet_cond<PacketScalar,ReversePacket> reverse_packet; |
| public: |
| |
| inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { } |
| |
| EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse) |
| |
| inline int rows() const { return m_matrix.rows(); } |
| inline int cols() const { return m_matrix.cols(); } |
| |
| inline Scalar& coeffRef(int row, int col) |
| { |
| return m_matrix.const_cast_derived().coeffRef(ReverseRow ? m_matrix.rows() - row - 1 : row, |
| ReverseCol ? m_matrix.cols() - col - 1 : col); |
| } |
| |
| inline const Scalar coeff(int row, int col) const |
| { |
| return m_matrix.coeff(ReverseRow ? m_matrix.rows() - row - 1 : row, |
| ReverseCol ? m_matrix.cols() - col - 1 : col); |
| } |
| |
| inline const Scalar coeff(int index) const |
| { |
| return m_matrix.coeff(m_matrix.size() - index - 1); |
| } |
| |
| inline Scalar& coeffRef(int index) |
| { |
| return m_matrix.const_cast_derived().coeffRef(m_matrix.size() - index - 1); |
| } |
| |
| template<int LoadMode> |
| inline const PacketScalar packet(int row, int col) const |
| { |
| return reverse_packet::run(m_matrix.template packet<LoadMode>( |
| ReverseRow ? m_matrix.rows() - row - OffsetRow : row, |
| ReverseCol ? m_matrix.cols() - col - OffsetCol : col)); |
| } |
| |
| template<int LoadMode> |
| inline void writePacket(int row, int col, const PacketScalar& x) |
| { |
| m_matrix.const_cast_derived().template writePacket<LoadMode>( |
| ReverseRow ? m_matrix.rows() - row - OffsetRow : row, |
| ReverseCol ? m_matrix.cols() - col - OffsetCol : col, |
| reverse_packet::run(x)); |
| } |
| |
| template<int LoadMode> |
| inline const PacketScalar packet(int index) const |
| { |
| return ei_preverse(m_matrix.template packet<LoadMode>( m_matrix.size() - index - PacketSize )); |
| } |
| |
| template<int LoadMode> |
| inline void writePacket(int index, const PacketScalar& x) |
| { |
| m_matrix.const_cast_derived().template writePacket<LoadMode>(m_matrix.size() - index - PacketSize, ei_preverse(x)); |
| } |
| |
| protected: |
| const typename MatrixType::Nested m_matrix; |
| }; |
| |
| /** \returns an expression of the reverse of *this. |
| * |
| * Example: \include MatrixBase_reverse.cpp |
| * Output: \verbinclude MatrixBase_reverse.out |
| * |
| */ |
| template<typename Derived> |
| inline Reverse<Derived, BothDirections> |
| DenseBase<Derived>::reverse() |
| { |
| return derived(); |
| } |
| |
| /** This is the const version of reverse(). */ |
| template<typename Derived> |
| inline const Reverse<Derived, BothDirections> |
| DenseBase<Derived>::reverse() const |
| { |
| return derived(); |
| } |
| |
| /** This is the "in place" version of reverse: it reverses \c *this. |
| * |
| * In most cases it is probably better to simply use the reversed expression |
| * of a matrix. However, when reversing the matrix data itself is really needed, |
| * then this "in-place" version is probably the right choice because it provides |
| * the following additional features: |
| * - less error prone: doing the same operation with .reverse() requires special care: |
| * \code m = m.reverse().eval(); \endcode |
| * - no temporary object is created (currently there is one created but could be avoided using swap) |
| * - it allows future optimizations (cache friendliness, etc.) |
| * |
| * \sa reverse() */ |
| template<typename Derived> |
| inline void DenseBase<Derived>::reverseInPlace() |
| { |
| derived() = derived().reverse().eval(); |
| } |
| |
| |
| #endif // EIGEN_REVERSE_H |