blob: 0fe6d29111cef1f10dc498adb3e8d2f488be8816 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_BLASUTIL_H
#define EIGEN_BLASUTIL_H
// This file contains many lightweight helper classes used to
// implement and control fast level 2 and level 3 BLAS-like routines.
// forward declarations
template<typename Scalar, int mr, int nr, typename Conj>
struct ei_gebp_kernel;
template<typename Scalar, int nr, int StorageOrder, bool PanelMode=false>
struct ei_gemm_pack_rhs;
template<typename Scalar, int mr, int StorageOrder, bool Conjugate = false, bool PanelMode = false>
struct ei_gemm_pack_lhs;
template<
typename Scalar,
int LhsStorageOrder, bool ConjugateLhs,
int RhsStorageOrder, bool ConjugateRhs,
int ResStorageOrder>
struct ei_general_matrix_matrix_product;
template<bool ConjugateLhs, bool ConjugateRhs, typename Scalar, typename RhsType>
static void ei_cache_friendly_product_colmajor_times_vector(
int size, const Scalar* lhs, int lhsStride, const RhsType& rhs, Scalar* res, Scalar alpha);
template<bool ConjugateLhs, bool ConjugateRhs, typename Scalar, typename ResType>
static void ei_cache_friendly_product_rowmajor_times_vector(
const Scalar* lhs, int lhsStride, const Scalar* rhs, int rhsSize, ResType& res, Scalar alpha);
// Provides scalar/packet-wise product and product with accumulation
// with optional conjugation of the arguments.
template<bool ConjLhs, bool ConjRhs> struct ei_conj_helper;
template<> struct ei_conj_helper<false,false>
{
template<typename T>
EIGEN_STRONG_INLINE T pmadd(const T& x, const T& y, const T& c) const { return ei_pmadd(x,y,c); }
template<typename T>
EIGEN_STRONG_INLINE T pmul(const T& x, const T& y) const { return ei_pmul(x,y); }
};
template<> struct ei_conj_helper<false,true>
{
template<typename T> std::complex<T>
pmadd(const std::complex<T>& x, const std::complex<T>& y, const std::complex<T>& c) const
{ return c + pmul(x,y); }
template<typename T> std::complex<T> pmul(const std::complex<T>& x, const std::complex<T>& y) const
{ return std::complex<T>(ei_real(x)*ei_real(y) + ei_imag(x)*ei_imag(y), ei_imag(x)*ei_real(y) - ei_real(x)*ei_imag(y)); }
};
template<> struct ei_conj_helper<true,false>
{
template<typename T> std::complex<T>
pmadd(const std::complex<T>& x, const std::complex<T>& y, const std::complex<T>& c) const
{ return c + pmul(x,y); }
template<typename T> std::complex<T> pmul(const std::complex<T>& x, const std::complex<T>& y) const
{ return std::complex<T>(ei_real(x)*ei_real(y) + ei_imag(x)*ei_imag(y), ei_real(x)*ei_imag(y) - ei_imag(x)*ei_real(y)); }
};
template<> struct ei_conj_helper<true,true>
{
template<typename T> std::complex<T>
pmadd(const std::complex<T>& x, const std::complex<T>& y, const std::complex<T>& c) const
{ return c + pmul(x,y); }
template<typename T> std::complex<T> pmul(const std::complex<T>& x, const std::complex<T>& y) const
{ return std::complex<T>(ei_real(x)*ei_real(y) - ei_imag(x)*ei_imag(y), - ei_real(x)*ei_imag(y) - ei_imag(x)*ei_real(y)); }
};
// Lightweight helper class to access matrix coefficients.
// Yes, this is somehow redundant with Map<>, but this version is much much lighter,
// and so I hope better compilation performance (time and code quality).
template<typename Scalar, int StorageOrder>
class ei_blas_data_mapper
{
public:
ei_blas_data_mapper(Scalar* data, int stride) : m_data(data), m_stride(stride) {}
EIGEN_STRONG_INLINE Scalar& operator()(int i, int j)
{ return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
protected:
Scalar* EIGEN_RESTRICT m_data;
int m_stride;
};
// lightweight helper class to access matrix coefficients (const version)
template<typename Scalar, int StorageOrder>
class ei_const_blas_data_mapper
{
public:
ei_const_blas_data_mapper(const Scalar* data, int stride) : m_data(data), m_stride(stride) {}
EIGEN_STRONG_INLINE const Scalar& operator()(int i, int j) const
{ return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
protected:
const Scalar* EIGEN_RESTRICT m_data;
int m_stride;
};
// Defines various constant controlling level 3 blocking
template<typename Scalar>
struct ei_product_blocking_traits
{
typedef typename ei_packet_traits<Scalar>::type PacketType;
enum {
PacketSize = sizeof(PacketType)/sizeof(Scalar),
NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
// register block size along the N direction (must be either 2 or 4)
nr = NumberOfRegisters/4,
// register block size along the M direction (currently, this one cannot be modified)
mr = 2 * PacketSize,
// max cache block size along the K direction
Max_kc = 8 * ei_meta_sqrt<EIGEN_TUNE_FOR_CPU_CACHE_SIZE/(64*sizeof(Scalar))>::ret,
// max cache block size along the M direction
Max_mc = 2*Max_kc
};
};
/* Helper class to analyze the factors of a Product expression.
* In particular it allows to pop out operator-, scalar multiples,
* and conjugate */
template<typename XprType> struct ei_blas_traits
{
typedef typename ei_traits<XprType>::Scalar Scalar;
typedef const XprType& ExtractType;
typedef XprType _ExtractType;
enum {
IsComplex = NumTraits<Scalar>::IsComplex,
IsTransposed = false,
NeedToConjugate = false,
HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit)
&& ( /* Uncomment this when the low-level matrix-vector product functions support strided vectors
bool(XprType::IsVectorAtCompileTime)
|| */
int(ei_inner_stride_at_compile_time<XprType>::ret) == 1)
) ? 1 : 0
};
typedef typename ei_meta_if<bool(HasUsableDirectAccess),
ExtractType,
typename _ExtractType::PlainObject
>::ret DirectLinearAccessType;
static inline ExtractType extract(const XprType& x) { return x; }
static inline Scalar extractScalarFactor(const XprType&) { return Scalar(1); }
};
// pop conjugate
template<typename Scalar, typename NestedXpr>
struct ei_blas_traits<CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestedXpr> >
: ei_blas_traits<NestedXpr>
{
typedef ei_blas_traits<NestedXpr> Base;
typedef CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestedXpr> XprType;
typedef typename Base::ExtractType ExtractType;
enum {
IsComplex = NumTraits<Scalar>::IsComplex,
NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex
};
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
static inline Scalar extractScalarFactor(const XprType& x) { return ei_conj(Base::extractScalarFactor(x.nestedExpression())); }
};
// pop scalar multiple
template<typename Scalar, typename NestedXpr>
struct ei_blas_traits<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, NestedXpr> >
: ei_blas_traits<NestedXpr>
{
typedef ei_blas_traits<NestedXpr> Base;
typedef CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, NestedXpr> XprType;
typedef typename Base::ExtractType ExtractType;
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
static inline Scalar extractScalarFactor(const XprType& x)
{ return x.functor().m_other * Base::extractScalarFactor(x.nestedExpression()); }
};
// pop opposite
template<typename Scalar, typename NestedXpr>
struct ei_blas_traits<CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, NestedXpr> >
: ei_blas_traits<NestedXpr>
{
typedef ei_blas_traits<NestedXpr> Base;
typedef CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, NestedXpr> XprType;
typedef typename Base::ExtractType ExtractType;
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
static inline Scalar extractScalarFactor(const XprType& x)
{ return - Base::extractScalarFactor(x.nestedExpression()); }
};
// pop/push transpose
template<typename NestedXpr>
struct ei_blas_traits<Transpose<NestedXpr> >
: ei_blas_traits<NestedXpr>
{
typedef typename NestedXpr::Scalar Scalar;
typedef ei_blas_traits<NestedXpr> Base;
typedef Transpose<NestedXpr> XprType;
typedef Transpose<typename Base::_ExtractType> ExtractType;
typedef Transpose<typename Base::_ExtractType> _ExtractType;
typedef typename ei_meta_if<bool(Base::HasUsableDirectAccess),
ExtractType,
typename ExtractType::PlainObject
>::ret DirectLinearAccessType;
enum {
IsTransposed = Base::IsTransposed ? 0 : 1
};
static inline const ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); }
};
template<typename T, bool HasUsableDirectAccess=ei_blas_traits<T>::HasUsableDirectAccess>
struct ei_extract_data_selector {
static const typename T::Scalar* run(const T& m)
{
return &ei_blas_traits<T>::extract(m).const_cast_derived().coeffRef(0,0); // FIXME this should be .data()
}
};
template<typename T>
struct ei_extract_data_selector<T,false> {
static typename T::Scalar* run(const T&) { return 0; }
};
template<typename T> const typename T::Scalar* ei_extract_data(const T& m)
{
return ei_extract_data_selector<T>::run(m);
}
#endif // EIGEN_BLASUTIL_H